- Как классифицируются стали по качеству
- Классификация сталей по качеству
- Маркировка стали по российской, европейской и американской системам
- Общие принципы классификации марок сталей
- Влияние углерода и легирующих элементов на свойства стали
- Принципы маркировки сталей по российской системе
- Маркировка сталей по американской и европейской системам
- Как классифицируются стали по качеству
- Классификация сталей
- Классификация сталей
- Химический состав
- Структурный состав
- Классификация по качеству
- Классификация по степени раскисления
- Классификация стали по назначению
- Строительные
- Стали для холодной штамповки
- Цементируемые стали
- Улучшаемые
- Высокопрочные стали
- Пружинно-рессорные стали
- Подшипниковые стали (шарикоподшипниковые)
- Автоматная сталь
- Износостойкая сталь
- Коррозионностойкие (нержавеющие) стали
- Коррозионностойкие стали делятся:
- Инструментальная сталь по назначению делится:
- Сталь для режущего инструмента
- Быстрорежущие стали (рапид)
- Углеродистые инструментальные стали
- Легированные инструментальные стали
- Стали для измерительных инструментов
- Штамповочные стали
- Сталь для штампов холодного деформирования
- Сталь для штампов горячего деформирования
- Как классифицируются стали по качеству
Как классифицируются стали по качеству
Классификация сталей по качеству
Классификация сталей и сплавов производится по химическому составу, по качеству (по способу производства и содержанию вредных примесей), по степени раскисления и характеру затвердевания .металла в изложнице, а также по назначению.
По химическому составу углеродистые стали различают в зависимости от содержания углерода на следующие группы:
• малоуглеродистые — менее 0,3% С;
• среднеуглеродистые — 0,3. 0,7% С;
• высокоуглеродистые — более 0,7 %С.
В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:
• низколегированные — менее 2,5%;
• среднелегированные — 2,5. 10%;
• высоколегированные — более 10%.
Легированные стали и сплавы делятся также на классы по структурному составу:
в отожженном состоянии — доэвтектоидный, заэвтектоидный, ледвбуритный (карбидный), ферритный, аустенитный;
в нормализованном состоянии — перлитный, мартенситный и аустенитный. К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному — с более высоким и к аустенитному — с высоким содержанием легирующих элементов.
По качеству, то есть по условиям производства (способу производства и содержанию вредных примесей), стали и сплавы делятся на следующие группы:
• обыкновенного качества (рядовые) менее 0,06 менее 0,07;
• качественные менее 0,04 менее 0,035;
• высококачественные менее 0,025 менее 0,025;
• особо высококачественные менее 0,015 менее 0,025.
Стали обыкновенного качества по химическому составу — углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах.
Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов, так как отличаются повышенными ликвацией (химической и структурной неоднородностью) и количеством неметаллических включений.
Стали качественные по химическому составу бывают углеродистые или легированные. Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более строгих требований к составу шихты, процессам плавки и разливки.
Стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные (сп), полуспокойные (пс) и кипящие (кп). Каждый из этих сортов отличается содержанием кислорода, азота и водорода. Так в кипящих сталях содержится наибольшее количество этих элементов.
Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные — в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям и содержанию газов, а следовательно, улучшение механических свойств.
По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.
7. Химико-термическая обработка: цианирование, диффузия, металлизация. Пороки термической обработки сталей и способы их устранения.
Цианирование стали, разновидность химико-термической обработки, заключающаяся в комплексном диффузионном насыщении поверхностного слоя стали углеродом и азотом в расплавах, содержащих цианистые соли, при 820—860 °С (среднетемпературное Цианирование (в сталелитейном пр-ве)) или при 930—950 °С (высокотемпературное Цианирование (в сталелитейном пр-ве)). Основная цель Цианирование (в сталелитейном пр-ве) — повышение твёрдости, износостойкости и предела выносливости стальных изделий. В процессе Цианирование (в сталелитейном пр-ве) цианистые соли окисляются с выделением атомарных углерода и азота, которые диффундируют в сталь. При среднетемпературном Цианирование (в сталелитейном пр-ве) образуется цианированный слой глубиной 0,15—0,6 мм с 0,6—0,7% С и 0,8—1,2% N, при высокотемпературном (этот вид Цианирование (в сталелитейном пр-ве) часто применяют вместо цементации) — слой глубиной 0,5—2 мм с 0,8—1,2% С и 0,2—0,3% N. После Цианирование (в сталелитейном пр-ве) изделие подвергают закалке и низкому отпуску. Недостатки Цианирование (в сталелитейном пр-ве): высокая стоимость, ядовитость цианистых солей и необходимость в связи с этим принятия специальных мер по охране труда и окружающей природы. Цианирование (в сталелитейном пр-ве) отличается от нитроцементации, при которой насыщение азотом и углеродом ведётся из газовой среды.
Диффузионная металлизация, процесс, основанный на диффузионном насыщении поверхностных слоёв изделий из металлов и сплавов различными металлами (см. Диффузия). Диффузионная металлизация проводят, чтобы придать поверхности металлических деталей специальные физико-химические и механические свойства. В зависимости от диффундирующего элемента различают: алитирование, диффузионное хромирование, молибденирование; марганценирование, хромоалитирование, хромотитанирование и другие виды. Диффузионное насыщение возможно из различных фаз: твёрдой, паровой, газовой и жидкой.
Насыщение из твёрдой фазы применяют для железа, никеля, кобальта, титана и др. металлов. В этом случае Диффузионная металлизация осуществляют различными тугоплавкими металлами (Mo, W, Nb, U и др.), упругость паров которых меньше упругости паров основного металла. Процесс протекает в герметизированном контейнере, в котором обрабатываемые детали засыпаются порошкообразным металлом, в вакууме или в нейтральной среде при 1000—1500°C. Насыщение из паровой фазы применяют для сплавов на основе железа, никеля, молибдена, титана и др. металлов такими элементами, которые имеют более высокую упругость паров, чем насыщаемый металл, например Zn, Al, Cr, Ti и др. Процесс происходит в герметичных контейнерах при разрежении
101—10-2 н/м2, или 10-1—10-4 мм рт. ст., и 850—1600°С, контактным или неконтактным способом. В первом случае паровая фаза возникает при сублимации металла и генерируется вблизи мест контактирования порошкообразного или кускообразного металла с обрабатываемой поверхностью; во втором — генерация паровой фазы происходит на некотором расстоянии от поверхности. Насыщение из газовой фазы производят при Диффузионная металлизация различных металлов элементами: Al, Cr, Mn, Mo, W, Nb, Ti и др. Диффузии металла предшествуют реакции взаимодействия газообразных химических соединений диффундирующего элемента с основным металлом. Газовой фазой служат галогениды диффундирующих металлов. Газовое насыщение осуществляется в муфельных печах или в печах специальной конструкции при 700—1000°С. Газовая фаза может генерироваться на расстоянии от насыщаемой поверхности (неконтактный способ) и в зоне контакта источника активной фазы с поверхностью металла (контактный способ). Насыщение из жидкой фазы применяют при алитировании, хромировании, цинковании, меднении. Процесс протекает в печах-ваннах, в которых расплав диффундирующего металла или его соли взаимодействуют с поверхностью обрабатываемых изделий при 800—1300°С. Этим методом осуществляют также комплексную Диффузионная металлизация, например хромоалитирование, хромотитанирование, хромоникелирование и т.д.
Диффузионная металлизация можно получать диффузионный слой толщиной от 10 мкм до 3 мм. Процессы Диффузионная металлизация позволяют повысить жаростойкость сплавов (например, алитированная сталь имеет жаростойкость до 900°С), абразивную износостойкость (например, хромирование стали У12 увеличивает её износостойкость в 6 раз), сопротивление термоудару, быстрой смене температур, коррозионную стойкость и кислотоупорность и улучшить другие свойства металлов и сплавов.
Металлизация, покрытие поверхности изделия металлами и сплавами для сообщения физико-химических и механических свойств, отличных от свойств металлизируемого (исходного) материала. Металлизация применяют для защиты изделий от коррозии, износа, эрозии, в декоративных и др. целях. По принципу взаимодействия металлизируемой поверхности (подложки) с наносимым металлом различают Металлизация, при которой сцепление покрытия с основой (подложкой) осуществляется механически — силами адгезии (см. табл., группа 1), и Металлизация, при которой сцепление обеспечивается силами металлической связи (группа 2): с образованием диффузионной зоны на границе сопрягающихся поверхностей, за пределами которой покрытие состоит из наложенного слоя металла или сплава (подгруппа 2а), и с образованием диффузионной зоны в пределах всего слоя покрытия (подгруппа 2б).
Технология Металлизация по типам 1 и 2а предусматривает наложение слоя вещества на поверхность холодного или нагретого до относительно невысоких температур изделия. К этим видам Металлизация относятся: электролитические (см. Гальванотехника), химические, газопламенные процессы получения покрытий (см. Напыление); нанесение покрытий плакированием, осаждением химических соединений из газовой фазы, электрофорезом; вакуумная Металлизация; Металлизация взрывом, воздействием лучей лазера, плазмы, погружением в расплавленные металлы и др. способы. В этих процессах Металлизация сопровождается изменением геометрии и размеров изделия соответственно толщине слоя наносимого металла или сплава. Технология Металлизация по типу 2б предусматривает диффузионное насыщение металлическими элементами поверхности деталей, нагретых до высоких температур, в результате которого в зоне диффузии элемента образуется сплав (см. Диффузионная металлизация). В этом случае геометрия и размеры металлизируемой детали практически не меняются.
Металлизация изделий по типу 1 производится в декоративных целях, для повышения твёрдости и износостойкости, для защиты от коррозии. Из-за слабого сцепления покрытия с подложкой этот вид Металлизация нецелесообразно применять для деталей, работающих в условиях больших нагрузок и температур. Металлизация деталей по типу 2 придаёт им высокую твёрдость и износостойкость, высокую коррозионную и эрозионную стойкость, жаростойкость, необходимые теплофизические и электрические свойства. Металлизация по типу 2б применяется для деталей, претерпевающих действие значительных механических напряжений (статических, динамических, знакопеременных) при низких и высоких температурах. Эти виды Металлизация, за некоторым исключением, используются для нанесения защитного слоя на подложки из различных металлов, сплавов и неметаллических материалов (пластмассы, стекла, керамика, бумага, ткани и др.). Металлизация находит применение в электротехнике. радиоэлектронике, оптике, ракетной технике, автомобильной промышленности, судостроении, самолётостроении и др. областях техники.
Закалка— придание стальному изделию высокой прочности и твердости. Но от закалки сталь становится более хрупкой. Этот недостаток устраняется в процессе отпуска стали. При закалке металл нагревают до высокой температуры, а затем быстро охлаждают в специальных охлаждающих средах (воде, масле и т. п.). Из одной и той же заготовки можно получить различные структуры и свойства, в зависимости от режима закалки изделия. Для достижения наилучших результатов стальные изделия постепенно нагревают до температуры 750—850°С. Затем разогретое изделие быстро охлаждают до температуры примерно 400°С. Охлаждение должно происходить не меньше чем на 150°С в секунду, то есть охлаждение должно произойти всего в 2—3 секунды. Скорость дальнейшего охлаждения до нормальной температуры может быть любой, так как структура, полученная при закалке, достаточно устойчива и скорость дальнейшего охлаждения на нее не оказывает влияния. Охлаждающей средой чаще всего бывает вода или трансформаторное масло. В воде металл остывает с большей скоростью, чем в масле: температура воды 186С — за секунду металл остывает на 600°С, а в масле всего на 150°С. Для повышения закаливающей способности в воду иногда добавляют до 10% поваренной соли или 10—12% серной кислоты, например при закалке плашек или метчиков. Более высокий нагрев и чрезмерно быстрое охлаждение водой приводит к нежелательным результатам — деформации стати и появлению в ней излишнего качества — напряжений. Для закалки инструментов из углеродистой стали применяют закалочные печи с температурой нагрева до 900°С, а для инструментов из легированных и быстрорежущих сталей — до 1325°С. Печи для закалки изделий бывают: камерные или пламенные, в которых изделие нагревают открытым пламенем; муфельные — нагревающие за счет сопротивления электрических обмоток; печи-ванны — представляющие собой тигли, наполненные расплавами солей, к примеру хлористым барием. В ваннах закалочное нагревание производить удобнее, т. к. температура содержащегося в ней расплава всегда постоянна и закаливаемое изделие не может нагреться выше этой температуры. К тому же известно, что нагрев в жидкостной среде происходит быстрее,
Маркировка стали по российской, европейской и американской системам
Сталь является основным металлическим материалом, применяемым в производстве машин, инструментов и приборов. Ее широкое использование объясняется наличием в этом материале целого комплекса ценных технологических, механических и физико-химических свойств. К тому же, сталь имеет относительно невысокую стоимость и может изготавливаться значительными партиями. Процесс производства этого материала постоянно совершенствуется, благодаря чему свойства и качество стали могут обеспечивать безаварийную эксплуатацию современных машин и приборов при высоких рабочих параметрах.
Общие принципы классификации марок сталей
Основные классификационные признаки сталей: химический состав, назначение, качество, степень раскисления, структура.
- Стали по химическому составу подразделяют на углеродистые и легированные. По массовой доле углерода и первая, и вторая группы сталей делят на: низкоуглеродистые (менее 0,3% С), среднеуглеродистые (концентрация С находится в пределах 0,3-07%), высокоуглеродистые – с концентрацией углерода более 0,7%.
Легированными называются стали, содержащие, помимо постоянных примесей, добавки, вводимые для повышения механических свойств этого материала.
В качестве легирующих добавок используют хром, марганец, никель, кремний, молибден, вольфрам, титан, ванадий и многие другие, а также сочетание этих элементов в различных процентных соотношениях. По количеству добавок стали делят на низколегированные (легирующих элементов менее 5%), среднелегированные (5-10%), высоколегированные (содержат более 10% добавок).
- По своему назначению стали бывают конструкционными, инструментальными и материалами специального назначения, обладающими особыми свойствами.
Наиболее обширным классом являются конструкционные стали, которые предназначаются для изготовления строительных конструкций, деталей приборов и машин. В свою очередь, конструкционные стали подразделяют на рессорно-пружинные, улучшаемые, цементуемые и высокопрочные.
Инструментальные стали различают в зависимости от назначения произведенного из них инструмента: мерительного, режущего, штампов горячей и холодной деформации.
Стали специального назначения разделяют на несколько групп: коррозионностойкие (или нержавеющие), жаростойкие, жаропрочные, электротехнические.
- По качеству стали бывают обыкновенного качества, качественными, высококачественными и особо качественными.
Под качеством стали понимают сочетание свойств, обусловленных процессом её изготовления. К таким характеристикам относятся: однородность строения, химического состава, механических свойств, технологичность. Качество стали зависит от содержания в материале газов – кислорода, азота, водорода, а также вредных примесей – фосфора и серы.
- По степени раскисления и характеру процесса затвердевания стали бывают спокойными, полуспокойными и кипящими.
Раскислением называют операцию удаления из жидкой стали кислорода, который провоцирует хрупкое разрушение материала при горячих деформациях. Спокойные стали раскисляют с помощью кремния, марганца и алюминия.
- По структуре разделяют стали в отожженном (равновесном) состоянии и нормализованном. Структурные формы сталей – феррит, перлит, цементит, аустенит, мартенсит, ледебурит и другие.
Влияние углерода и легирующих элементов на свойства стали
Стали промышленного производства являются сложными по химическому составу сплавами железа и углерода. Кроме этих основных элементов, а также легирующих компонентов в легированных сталях, материал содержит постоянные и случайные примеси. От процентного содержания этих компонентов и зависят основные характеристики стали.
В нашем прайс-листе Вы можете ознакомиться с актуальной стоимостью арматуры в Санкт-Петербурге и Ленинградской области.
Определяющее влияние на свойства стали оказывает углерод. После отжига структура этого материала состоит из феррита и цементита, содержание которого увеличивается пропорционально росту концентрации углерода. Феррит является малопрочной и пластичной структурой, а цементит – твердой и хрупкой. Поэтому повышение содержания углерода приводит к увеличению твердости и прочности и снижению пластичности и вязкости. Углерод меняет технологические характеристики стали: обрабатываемость давлением и резанием, свариваемость. Увеличение концентрации углерода приводит к ухудшению обрабатываемости резанием из-за упрочнения и снижения теплопроводности. Отделение стружки от стали с высокой прочностью повышает количество выделяемой теплоты, что провоцирует уменьшение стойкости инструмента. Но низкоуглеродистые стали с малой вязкостью также обрабатываются плохо, так как образуется с трудом удаляемая стружка.
Наилучшую обрабатываемость резанием имеют стали с содержанием углерода 0,3-0,4%.
Увеличение концентрации углерода приводит к снижению способности стали к деформации в горячем и холодном состояниях. Для стали, предназначенной для сложной холодной штамповки, количество углерода ограничено 0,1%.
Хорошей свариваемостью обладают низкоуглеродистые стали. Для сварки средне- и высокоуглеродистых сталей используют подогрев, медленное охлаждение и прочие технологические операции, предотвращающие появление холодных и горячих трещин.
Для получения высоких прочностных свойств количество легирующих компонентов должно быть рациональным. Избыток легирования, исключая введение никеля, приводит к снижению запаса вязкости и провокации хрупкого разрушения.
- Хром – недефицитный легирующий компонент, оказывает позитивное воздействие на механические свойства стали при его содержании до 2%.
- Никель – наиболее ценная и дефицитная легирующая добавка, вводимая в концентрации 1-5%. Он наиболее эффективно снижает порог хладноломкости и способствует увеличению температурного запаса вязкости.
- Марганец, как более дешёвый компонент, часто используют в качестве заменителя никеля. Увеличивает предел текучести, но может сделать сталь чувствительной к перегреву.
- Молибден и вольфрам – дорогие и дефицитные элементы, применяемые для повышения теплостойкости быстрорежущих сталей.
Принципы маркировки сталей по российской системе
На современном рынке металлопродукции не существует общей системы маркировки сталей, что значительно затрудняет торговые операции, приводя к частым ошибкам при заказе.
В России принята буквенно-цифровая система обозначения, в которой буквами маркируют названия элементов, содержащихся в стали, а цифрами – их количество. Буквами также обозначают способ раскисления. Маркировкой «КП» обозначают кипящие стали, «ПС» – полуспокойные, а «СП» – спокойные стали.
- Стали обыкновенного качества имеют индекс Ст, после которого указывается условный номер марки от 0 до 6. Затем указывают степень раскисления. Впереди ставят номер группы: А – сталь с гарантированными механическими характеристиками, Б – химическим составом, В – обоими свойствами. Как правило, индекс группы А не ставится. Пример обозначения – Б Ст.2 КП.
- Для обозначения конструкционных качественных углеродистых сталей впереди указывается двухзначное число, обозначающее содержание С сотыми долями процента. В конце – степень раскисления. Например, сталь 08КП. Качественные инструментальные углеродистые стали впереди имеют букву У, а далее – концентрация углерода двухзначным числом в десятых долях процента – например, сталь У8. Высококачественные стали в конце марки имеют букву А.
- В марках легированных сталей буквами обозначают легирующие элементы: «Н» – никель, «Х» – это хром, «М» – молибден, «Т» – это титан, «В» – вольфрам, «Ю» — алюминий. В конструкционных легированных сталях впереди указывается содержание С в сотых частях процента. В инструментальных легированных сталях углерод маркируется десятыми долями процента, если содержание этого компонента превышает 1,5% – его концентрация не указывается.
- Быстрорежущие инструментальные стали обозначены индексом Р и указанием содержания вольфрама в процентах, например, Р18.
Маркировка сталей по американской и европейской системам
Собираетесь купить металлопрокат? В нашем магазине разумные цены и качество производителя.
В США существует несколько систем маркировки сталей, разработанных различными организациями по стандартизации. Для нержавеющих сталей, чаще всего, применяют систему AISI, которая действует и в Европе. Согласно AISI, сталь обозначается тремя цифрами, в отдельных случаях после них идут одна или несколько букв. Первая цифра говорит о классе стали, если она – 2 или 3, то это аустенитный класс, если 4 – ферритный или мартенситный. Следующие две цифры обозначают порядковый номер материала в группе. Буквы обозначают:
- L – низкую массовую доля углерода, менее 0,03%;
- S – нормальную концентрацию С, менее 0,08%;
- N – означает, что добавлен азот;
- LN – низкое содержание углерода сочетается с добавкой азота;
- F – повышенную концентрацию фосфора и серы;
- Se – сталь содержит селен, В – кремний, Cu – медь.
В Европе применяется система EN, которая отличается от российской тем, что в ней сначала перечисляются все легирующие элементы, а затем в том же порядке цифрами указывается их массовая доля. Первая цифра – концентрация углерода в сотых долях процента.
Если легированные стали, конструкционные и инструментальные, кроме быстрорежущих, включают более 5% хотя бы одной легирующей добавки, перед содержанием углерода ставят букву «Х».
Страны ЕС применяют маркировку EN, в некоторых случаях параллельно указывая национальную марку, но с пометкой «устаревшая».
Как классифицируются стали по качеству
Что же такое Сталь? Многие полагают, что это просто железо, но железо это всего лишь химический элемент.
На самом деле Сталь — это сплав железа (Fe — Ferrum) с углеродом (C – Carboneum), в пропорциях Углерода от 0,02 до 2,14 % и Железа не менее 45%, остальное другие химические элементы.
Общей классификации сталей и сплавов не существует, потому что многие из них можно применять в самых различных областях промышленности, поэтому стали обычно классифицируют по данным признакам:
По химическому составу: углеродистые (без легирующих элементов), низколегированные, легированные, высоколегированные.
По качеству: сталь обыкновенного качества, качественная, высококачественная и особо качественная.
Главными критерием по качеству являются более жесткие требования по химическому составу и, главное по содержанию вредных примесей, таких как фосфор и сера.
Р (Фосфор), % | S (Сера), % | |
Обыкновенная | 0,040 | 0,050 |
Качественная | 0,035 | 0,035 |
Высококачественная | 0,025 | 0,025 |
Особо высококачественная | 0,025 | 0,015 |
Сталь углеродистую обыкновенного качества подразделяют на три группы:
- А — поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
- Б — поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их кроме условий обработки определяется химическим составом (БСт0, БСт1 и др.);
- В — поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).
По требованиям к испытаниям механических свойств сталь подразделяют на пять категорий:
- Iкатегория — Без испытания механических свойств на растяжение и ударную вязкость. Горячекатаная, кованая, калиброванная.
- IIкатегория — С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из нормализованных заготовок размером 25 мм (диаметр или сторона квадрата). Горячекатаная, кованая, калиброванная.
- IIIкатегория — С испытанием механических свойств на растяжение на образцах, изготовленных из нормализованных заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.
- IVкатегория — С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из термически обработанных (закалка + отпуск) заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.
- Vкатегория — С испытанием механических свойств на растяжение на образцах, изготовленных из сталей в нагартованном или термически обработанном состоянии (отожженной или высокоотпущенной). Калиброванная.
Легированную сталь по степени легирования разделяют: низколегированная (легирующих элементов до 2,5%), среднелегированная (от 2,5 до 10%), высоколегированная (от 10 до 50%).
Легирующие элементы — химические элементы, специально введенные в сталь для получения требуемых строения, структуры, физико-химических и механических свойств.
Основными легирующими элементами в сталях являются:
Марганец | Медь |
Кремний | Титан |
Хром | Ванадий |
Никель | Цинк |
Молибден | Ниобий |
Вольфрам | Алюминий |
Кобальт | Бор |
В некоторых сталях легирующими элементами могут быть также P (Фосфор), N (Азот), Se (Селен), Pb (Свинец) и др. Перечисленные элементы, а также H (Водород), O (Кислород), Sn (Олово), Sb (Сурьма), Bi (Висмут) могут быть и примесями в стали. Содержание легирующих элементов может колебаться от тысячных долей процента до десятков процентов.
Отнесение химических элементов к примесям или легирующим элементам зависит от их количества и роли в стали.
Легированные сталь — это сплавы на основе железа, в химический состав которых специально введены легирующие элементы, обеспечивающие при определенных способах производства и обработки требуемую структуру и свойства. В легированных сталях содержание отдельных элементов больше, чем этих же элементов в виде примесей.
Такие легирующие элементы, как V, Nb, Ti, Zn, B — могут оказывать существенное влияние на структуру и свойства стали при их содержании в стали в сотых долях процента. Иногда такие стали называют микролегированными.
К высоколегированным относят:
- коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
- жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 гр. С, работающие в не нагруженном и слабонагруженном состоянии;
- жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.
Электротехническую тонколистовую сталь разделяют:
а. по структурному состоянию и виду прокатки на классы:
- горячекатаная изотропная;
- холоднокатаная изотропная;
- холоднокатаная анизотропная с ребровой текстурой;
- по содержанию кремния:
- 0 — до 0,4 %;
- 1 — св. 0,4 до 0,8 %;
- 2 — св. 0,8 до 1,8 %;
- 3 — св. 1,8 до 2,8 %;
- 4 — св. 2,8 до 3,8 %;
- 5 — св. 3,8 до 4,8 %;
химический состав стали не нормируется;
- по основной нормируемой характеристике на группы:
- 0 — удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (P1,7/50);
- 1 — удельные потери при магнитной индукции 1,5 Тл и частоте 50 Гц (P1,5/50);
- 2 — удельные потери при магнитной индукции 1,0 Тл и частоте 400 Гц (P1,0/400);
- 6 — магнитная индукция в слабых магнитных полях при напряженности поля 0,4 А/м (В 0, 4);
- 7 — магнитная индукция в средних магнитных полях при напряженности поля 10 А/м (В10).
Сталь легированную конструкционную в зависимости от химического состава и свойств делят на качественную, высококачественную А и особо высококачественную Ш (электрошлакового переплава).
По видам обработки при поставке сталь бывает горячекатаная, кованая, калиброванная, серебрянка.
По назначению изготовляют прокат: для горячей обработки давлением и холодного волочения (прокат) и для холодной механической обработки.
Классификация сталей
Данная статья новичку покажется очень сложной. Здесь будет использовано много не понятных терминов, но без этого невозможно раскрыть всю суть о классификации сталей. Ваша задача – прочесть и понять в общих чертах как делятся стали, какие они бывают и для чего они применяются.
Классификация сталей
Классифицируются стали по следующим пунктам:
- химическому составу;
- структурному составу;
- качеству;
- степени раскисления;
- назначению.
Химический состав
По химическому составу стали делятся на:
Углеродистые делятся на:
- низкоуглеродистые – содержат до 0,25% С;
- среднеуглеродистые – содержат от 0,25 до 0,6% С;
- высокоуглеродистые – содержат от 0,6 до 0,2% С.
Легированные делятся на:
- низколегированные – содержанию легирующих элементов до 0,25%;
- среднелегированные – содержанию легирующих элементов 0,25 – 10,0%;
- высоколегированны – содержанию легирующих элементов более 10,0%.
По структуре в отожженном состоянии стали делятся на следующие классы:
- доэвтектоидный;
- заэвтектоидный;
- ледебуритный (карбидный);
- ферритный;
- аустенитный.
Структурный состав
По структуре после нормализации стали делятся на следующие классы:
Классификация по качеству
По качеству стали классифицируются:
- обыкновенного качества;
- качественные;
- высококачественные;
- особокачественные.
Стали обыкновенного качества массово применяются в разных отраслях по причине их дешевизны. Не обладает особыми свойствами. Содержат углерод до 0,6%.
Качественные стали бывают углеродистые и легированные. Применяются для изготовления ответственных деталей и узлов. Имеют высокую стоимость.
Высококачественные стали применяется в особо ответственных узлах. Имеют низкого содержания вредных примесей (серы и фосфора).
Особокачественные стали имеют очень низкое содержание серы и фосфора. Применяются в ответственных узлах, которые испытывают высокие динамические нагрузки.
Классификация по степени раскисления
По степени раскисления стали делятся:
Спокойные стали содержат малое количество кислорода. Затвердевание происходит спокойно без газовыделения. Спокойные стали массово применяют в сварочном производстве.
Полуспокойные стали затвердевают без кипения, но выделяют большое количество газов. По качеству очень приближены к спокойным сталям и могут их заменить.
Кипящие стали содержат в своём составе большое количество вредных примесей. Они очень хрупкие и плохо свариваются.
Классификация стали по назначению
Конструкционные стали делятся на:
- строительные;
- стали для холодной штамповки;
- цементируемые;
- улучшаемые;
- высокопрочные;
- пружинно-рессорные;
- подшипниковые;
- автоматные;
- коррозионностойкие;
- износостойкие;
- жаропрочные и жаростойкие.
Строительные
Применяются для изготовления конструкций любой сложности, имеют хорошую свариваемость.
Стали для холодной штамповки
К таким сталям относятся низкоуглеродистые стали обладающие высокой пластичностью.
Цементируемые стали
Это стали с содержанием углерода в пределах 0,1-0,3% и работающие при повышенных динамических нагрузках.
Улучшаемые
К улучшаемым относятся среднеуглеродистые и хромистые стали которые подвергаются термообработке (закалке и высоком отпуску).
Высокопрочные стали
К ним относятся стали имеющие специальный химический состав, который при термообработке увеличивают прочностные свойства в разы.
Пружинно-рессорные стали
Применяются в машиностроении для изготовления амортизаторов и рессор высоконагруженных машин.
Подшипниковые стали (шарикоподшипниковые)
К данным сталям предъявляют повышенные требования по прочности, износоустойчивости и выносливости. Данные свойства достигаются за счёт содержания хрома в пределах 1,5%. Ярким примером такой шарикоподшипниковой стали является сталь ШХ15.
Автоматная сталь
Данная сталь используется для изготовления крепёжных деталей на металлообрабатывающих станках. В связи с этим данная сталь должна хорошо обрабатываться на станке путём резания, образовывая легко обламывающуюся стружку. Минусом автоматные стали является низкая пластичность.
Износостойкая сталь
Основное применение – траки гусеничных машин, ковши экскаваторов и землеройных машин. Износостойкость достигается, за счёт введение в сталь марганца.
Коррозионностойкие (нержавеющие) стали
Эти стали содержат хром в пределах от 14%. За счёт хрома происходит образование на поверхности стали оксидной плёнки, что защищает сталь от разрушения в агрессивной среде.
Коррозионностойкие стали делятся:
- Коррозионностойкие. Из них изготавливают различные узлы, которые эксплуатируются при температуре до 600°С.
- Жаропрочные. Из них изготавливают клапаны, роторы, лопатки турбин, работающие при высоких температурах (80% от температуры плавления) в течение длительного времени.
- Жаростойкие. Изготавливают ответственные узлы, работающие при высоких температурах (1200°С).
- Криогенные. Применяется для изготовления деталей холодильных установок, работающих при температуре до -200°С.
Инструментальная сталь по назначению делится:
- для режущего инструмента;
- для измерительного инструмента;
- сталь для штампов.
Сталь для режущего инструмента
Имеет высокую твердость и термостойкость, Должна длительное время сохранять режущие свойства, а также выдерживать большие механические нагрузки в процессе эксплуатации.
Сама сталь для режущего инструмента бывают 3 -х типов:
- быстрорежущие стали;
- углеродистые;
- легированные инструментальные.
Быстрорежущие стали (рапид)
Быстрорежущая сталь (рапид) используют для изготовления режущего инструмента, работающего на высоких оборотах. Обозначается «Р». Пример Р9, Р18.
Углеродистые инструментальные стали
Содержат в себе углерода до 1,3%. Применяются в слесарном инструменте и имеют обозначение «У». Пример: У7, У10, У12.
Легированные инструментальные стали
Содержат легирующие добавки в приделах до 3%. Применяется для изготовления свёрл, фрез и др. режущего инструмента. Пример: 11ХФ.
Стали для измерительных инструментов
Должна обладать твёрдостью и износостойкостью. К такому инструменту относят: штангенциркуль, линейки, калибры, шаблоны и т. д. Для повышенных классов точности применяют стали X, ХВГ, ШХ15. Для пониженных – сталь У10А, УПА, У12А.
Штамповочные стали
Главная задача штамповочной стали обладать высокой твёрдостью и износостойкостью.
Делятся штамповочные стали на:
- стали для штампов холодного деформирования;
- стали для штампов горячего деформирования.
Сталь для штампов холодного деформирования
Обладает высокой твёрдостью и износостойкостью, для обеспечения точного размера заготовки при штамповке.
Сталь для штампов горячего деформирования
Должна обладать всеми свойствами, что и стали холодного деформирования, а также работать в условиях высоких температур (до 600°С).
Как классифицируются стали по качеству
Что же такое Сталь? Многие полагают, что это просто железо, но железо это всего лишь химический элемент.
На самом деле Сталь — это сплав железа (Fe — Ferrum) с углеродом (C – Carboneum), в пропорциях Углерода от 0,02 до 2,14 % и Железа не менее 45%, остальное другие химические элементы.
Общей классификации сталей и сплавов не существует, потому что многие из них можно применять в самых различных областях промышленности, поэтому стали обычно классифицируют по данным признакам:
По химическому составу: углеродистые (без легирующих элементов), низколегированные, легированные, высоколегированные.
По качеству: сталь обыкновенного качества, качественная, высококачественная и особо качественная.
Главными критерием по качеству являются более жесткие требования по химическому составу и, главное по содержанию вредных примесей, таких как фосфор и сера.
Р (Фосфор), % | S (Сера), % | |
Обыкновенная | 0,040 | 0,050 |
Качественная | 0,035 | 0,035 |
Высококачественная | 0,025 | 0,025 |
Особо высококачественная | 0,025 | 0,015 |
Сталь углеродистую обыкновенного качества подразделяют на три группы:
- А — поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
- Б — поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их кроме условий обработки определяется химическим составом (БСт0, БСт1 и др.);
- В — поставляемую по механическим свойствам и химическому составу для деталей, подвергаемых сварке (ВСт1, ВСт2 и др.).
По требованиям к испытаниям механических свойств сталь подразделяют на пять категорий:
- Iкатегория — Без испытания механических свойств на растяжение и ударную вязкость. Горячекатаная, кованая, калиброванная.
- IIкатегория — С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из нормализованных заготовок размером 25 мм (диаметр или сторона квадрата). Горячекатаная, кованая, калиброванная.
- IIIкатегория — С испытанием механических свойств на растяжение на образцах, изготовленных из нормализованных заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.
- IVкатегория — С испытанием механических свойств на растяжение и ударную вязкость на образцах, изготовленных из термически обработанных (закалка + отпуск) заготовок указанного в заказе размера, но не более 100 мм. Горячекатаная, кованая, калиброванная.
- Vкатегория — С испытанием механических свойств на растяжение на образцах, изготовленных из сталей в нагартованном или термически обработанном состоянии (отожженной или высокоотпущенной). Калиброванная.
Легированную сталь по степени легирования разделяют: низколегированная (легирующих элементов до 2,5%), среднелегированная (от 2,5 до 10%), высоколегированная (от 10 до 50%).
Легирующие элементы — химические элементы, специально введенные в сталь для получения требуемых строения, структуры, физико-химических и механических свойств.
Основными легирующими элементами в сталях являются:
Марганец | Медь |
Кремний | Титан |
Хром | Ванадий |
Никель | Цинк |
Молибден | Ниобий |
Вольфрам | Алюминий |
Кобальт | Бор |
В некоторых сталях легирующими элементами могут быть также P (Фосфор), N (Азот), Se (Селен), Pb (Свинец) и др. Перечисленные элементы, а также H (Водород), O (Кислород), Sn (Олово), Sb (Сурьма), Bi (Висмут) могут быть и примесями в стали. Содержание легирующих элементов может колебаться от тысячных долей процента до десятков процентов.
Отнесение химических элементов к примесям или легирующим элементам зависит от их количества и роли в стали.
Легированные сталь — это сплавы на основе железа, в химический состав которых специально введены легирующие элементы, обеспечивающие при определенных способах производства и обработки требуемую структуру и свойства. В легированных сталях содержание отдельных элементов больше, чем этих же элементов в виде примесей.
Такие легирующие элементы, как V, Nb, Ti, Zn, B — могут оказывать существенное влияние на структуру и свойства стали при их содержании в стали в сотых долях процента. Иногда такие стали называют микролегированными.
К высоколегированным относят:
- коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии; межкристаллитной коррозии, коррозии под напряжением и др.;
- жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения в газовых средах при температуре выше 50 гр. С, работающие в не нагруженном и слабонагруженном состоянии;
- жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.
Электротехническую тонколистовую сталь разделяют:
а. по структурному состоянию и виду прокатки на классы:
- горячекатаная изотропная;
- холоднокатаная изотропная;
- холоднокатаная анизотропная с ребровой текстурой;
- по содержанию кремния:
- 0 — до 0,4 %;
- 1 — св. 0,4 до 0,8 %;
- 2 — св. 0,8 до 1,8 %;
- 3 — св. 1,8 до 2,8 %;
- 4 — св. 2,8 до 3,8 %;
- 5 — св. 3,8 до 4,8 %;
химический состав стали не нормируется;
- по основной нормируемой характеристике на группы:
- 0 — удельные потери при магнитной индукции 1,7 Тл и частоте 50 Гц (P1,7/50);
- 1 — удельные потери при магнитной индукции 1,5 Тл и частоте 50 Гц (P1,5/50);
- 2 — удельные потери при магнитной индукции 1,0 Тл и частоте 400 Гц (P1,0/400);
- 6 — магнитная индукция в слабых магнитных полях при напряженности поля 0,4 А/м (В 0, 4);
- 7 — магнитная индукция в средних магнитных полях при напряженности поля 10 А/м (В10).
Сталь легированную конструкционную в зависимости от химического состава и свойств делят на качественную, высококачественную А и особо высококачественную Ш (электрошлакового переплава).
По видам обработки при поставке сталь бывает горячекатаная, кованая, калиброванная, серебрянка.
По назначению изготовляют прокат: для горячей обработки давлением и холодного волочения (прокат) и для холодной механической обработки.