- Как маркируется серый чугун
- Маркировка чугунов
- Серый чугун: применение, состав и маркировка
- Основные характеристики
- Маркировка
- Состав серого чугуна и его структура
- Применение
- Чугуны. Марки, свойства и их применение
- Чугун серый
- Чугун высокопрочный с шаровидным графитом
- Чугун ковкий
- Чугун легированный
- Классификация и маркировка чугунов
- Серый чугун с пластинчатым графитом
Как маркируется серый чугун
Маркировка чугунов
Чугунами называют высокоуглеродистые сплавы с содержанием углерода свыше 2,03 %. Несмотря на значительный объем применения сталей, расширения области использования цветных сплавов, порошков и неметаллических материалов, чугуны широко применяют во многих отраслях промышленности. Относительно невысокий уровень механических свойств компенсируется низкой стоимостью, высокими литейными свойствами, хорошей обрабатываемостью. Механические и технологические свойства чугунов определяются их структурными характеристиками, упрочняющая термическая обработка для обычных чугунов практически не применяется. Требования к составу чугунов менее строгие по сравнению со сталью, поэтому в основу классификации и маркировки чугунов во всех стандартах положены структурные характеристики и гарантированный уровень механических свойств.
В Украине и СНГ действует система маркировки чугунов, основанная на классификации чугунов по форме графита. По этой классификации чугуны разделяют на:
- чугуны с пластинчатым графитом – серые чугуны;
- чугуны с шаровидным графитом – высокопрочные чугуны;
- чугуны с хлопьевидным графитом – ковкие чугуны.
Маркировка серого чугуна определена ГОСТ 1412–85 «Чугун с пластинчатым графитом для отливок. Марки». Согласно стандарта, такой чугун маркируется буквами «СЧ» и двумя цифрами, которые показывают минимально допустимое временное сопротивление чугуна в кгс/мм 2 (0,1*Н/мм 2 ). Например, обозначение чугуна СЧ 30 означает, что он относится к серым чугунам с пластинчатым графитом и его =300 Н/мм 2 (30 кгс/мм 2 ). Всего стандартом предусмотрен следующий ряд марок чугунов – от СЧ 10 до СЧ 35.
Высокопрочный чугун маркируют в соответствии с ГОСТ 7293–85 «Чугун с шаровидным графитом для отливок. Марки». Марку высокопрочного чугуна обозначают буквами «ВЧ» и двумя цифрами, которые показывают его минимальное временное сопротивление в кгс/мм 2 . Например, маркировка ВЧ 50 означает, что этот чугун является высокопрочным и его =500 Н/мм 2 (50 кгс/мм 2 ).
Марки ковкого чугуна определены в ГОСТ 1215–79 «Отливки из ковкого чугуна. Общие технические условия». Он обозначается буквами «КЧ» и двумя группами цифр, которые определяют минимальное временное сопротивление в кгс/мм 2 и относительное удлинение при растяжении в процентах – КЧ –b. Например, КЧ 37–12 означает, что эта марка ковкого чугуна с
=370 Н/мм 2 (37 кгс/мм 2 ) и относительным удлинением 12 %.
В промышленности широко применяют изделия из легированных чугунов с особыми свойствами. Обычно их маркировка начинается с буквы, указывающей на область применения чугуна.
Например, по ГОСТ 1585–85 «Чугун антифрикционный для отливок» чугун маркируют буквами «АЧ» (антифрикционный чугун), затем указывают тип чугуна (С – серый с пластинчатым графитом, В – высокопрочный с шаровидным графитом, К – ковкий чугун с компактным графитом), далее число, обозначающее порядковый номер марки: АЧС–5, АЧК–2.
Очень широко легированные чугуны применяют для изготовления изделий, работающих в условиях интенсивного абразивного износа (мелющие тела, прокатные валки, формы для прессования огнеупоров и т.п.). Такие чугуны в структуре содержат значительное количество твердой и износостойкой карбидной фазы и по структурному типу их относят к белым чугунам. В этом случае легирующие элементы и их содержание обозначают так же, как и для сталей. Впереди указывают буквы «ИЧ» – износостойкий чугун, далее содержание легирующих элементов, начиная с основного – хрома. Содержание углерода в чугуне зависит от содержания основных элементов и в марке не указывается. Например, марка ИЧХ4Г7Д соответствует износостойкому чугуну с содержанием хрома (в среднем) 4 %, 7 % Mn, 2 . По EN этот чугун обозначается как GJL-250, где «250» – в Н/мм 2 .
В стандарте DIN «Gusseisen mit Kugelgraphit (DIN1693 / EN1563: 1997)» на шаровидный графит в названии марки три буквы «GGG» означают: G – «gegossen» (отлито), G – «gubeisen» (чугун), G – «globular» (шаровидный), далее указывают в кгс/мм 2 , например, GGG–60. По EN1563 «Founding. Sphero >
В британском стандарте на шаровидный графит «Nodular graphite cast iron BS 2789» марка (grade) чугуна обозначается цифрами, соответственно (Н/мм 2 ) / b (%). Например, grade 420/12 означает, что чугун имеет свойства
=420 Н/мм 2 , b=12 %.
Ковкий чугун в зависимости от матрицы обозначается буквами «В» (ферритный) или «Р» (перлитный), далее указывают (в кгс/мм 2 ) и b в процентах. Например, B35-12, P60-03. Серый чугун маркируют только тремя цифрами, которые показывают временное сопротивление чугуна в Н/мм 2 – grade 180.
В настоящее время стандарты серии EN заменяют стандарты BS.
В США чугуны разделяют на классы следующим образом:
- серый чугун (gray iron);
- высокопрочный чугун (ductile iron);
- ковкий чугун (malleable iron);
- чугун с вермикулярным (компактным) графитом (compacted graphite iron);
- белый чугун (white iron);
- половинчатый чугун (mottled iron);
- высокопрочный изотермически закаленный чугун (austempered ductile iron).
В табл. 4.5 приведена классификация форм графитных включений по ASTM A247 и сравнение ее с ISO R945(E).
Таблица 4.5 – Классификация форм графитных включений
Технические условия ASTM A48 делят серые чугуны на классы – от 20 до 60, где число обозначает временное сопротивление в ksi. Например, класс 20 соответствует 140 Н/мм 2 , что отвечает марке чугуна СЧ 15.
Кроме указанного, действует еще ряд технических условий на серые чугуны для определенного вида изделий, например, ASTM A159 – для автомобильной промышленности.
Для высокопрочных чугунов также используется система маркировки по механическим свойствам. В системе ASTM для таких чугунов указывают временное сопротивление в ksi – предел текучести в ksi – относительное удлинение в процентах. Например, ASTM A716 – 60–42–10 означает высокопрочный чугун по техническим условиям А716 с =60 ksi;
=42 ksi; b=10 %.
В стандарте UNS маркировка чугунов начинается с буквы «F» и состоит из пятизначного номера. Маркировка серых чугунов начинается с «1», например, F11701 (аналог СЧ 15), ковких – с «2» – F23530, высокопрочных – с «3» – F33100.
По ASTM ковкие чугуны обозначают пятизначным числом, в котором первые три цифры – предел текучести в Н/мм 2 , две последние – относительное удлинение в процентах. Для того, чтобы указать на размерность (метрическую) в маркировке ставят букву «М», например чугун по ASTM A47 марки 480М3 означает, что =480 Н/мм 2 , b=3 %.
Маркировка чугуна с вермикулярным графитом не имеет аналогов в стандартах Украины и СНГ. По ASTM A842 марки такого чугуна 250; 300; ..450, где число – временное сопротивление в Н/мм 2 .
Износостойкие легированные чугуны стандартизированы техническими условиями ASTM A532. По техническим условиям такие чугуны делят на три класса по основному элементу и системе легирования. Класс I определяет износостойкие чугуны, легированные никелем – так называемые «нихарды» (от Ni–hard) и в него входят четыре типа чугунов, обозначаемые буквами A, B, C, D. Класс II – чугуны со средним содержанием хрома (от 12 до 20 %) и тоже делится на типы (A, B, C). Класс III – чугун с содержание хрома 25 % (тип А).
По стандарту Японии JIS маркировка чугунов начинается с буквы «F», далее идет буква или сочетание букв, показывающие тип чугуна («C» – серый чугун, «CM» – ковкий, «CD» – высокопрочный) и три цифры, показывающие временное сопротивление чугуна в Н/мм 2 . Например, FCD 400 соответствует марке ВЧ 40.
В табл. 4.6 приведены сравнительные примеры маркировки основных типов чугунов по различным стандартам.
Таблица 4.6 – Сравнение маркировок основных типов чугунов по различным стандартам
Серый чугун: применение, состав и маркировка
Чугун – это сплав железа и углерода. Один из самых широко распространенных видов – это серый чугун. Объем углерода в его составе превышает 2,14% и содержится в диапазоне от 2,4 до 4,2%.
Свое название материал получил по цвету излома, имеющего серый цвет.
По сути, это литьевой чугун с вкраплениями пластинчатого графита. Но и, тем не менее, его продолжают называть серым. Кстати, такой же цвет можно увидеть и на изломе ковкого чугуна. Металлурги установили зависимость между объемом свободного углерода, но не от его формы.
В сером чугуне углерод по мере охлаждения приобретает форму хлопьевидных или пластинчатых вкраплений. Разница между чугуном и сталью заключена в объеме углерода. Углерод абсолютно полностью растворяется в стали и не содержится в виде вкраплений, в сером чугуне содержатся вкрапления углерода называемыми графитом.
Основные характеристики
Чугун широко распространен и востребован черной металлургией. Его производят путем воссоздания железной руды при поддержке углеродного топлива (кокса). В процессе реакции восстановления, полученный расплав получает дополнительную порцию углерода.
Именно, объем углерода, находящийся в свободном состоянии, определяет механические параметры этого чугуна. Одно из свойств, позволяющее применять этот материал не только как передельный металл, но и как литьевой – это довольно высокие литейные качества и малая усадка при застывании отливки. У серого чугуна отмечается высокая текучесть, и это позволяет отливать довольно сложные изделия.
Существует и ограничение на применение изделий полученных из этого чугуна – оно обусловлено тем, этот материал имеет невысокую прочность на изгиб и высокую хрупкость. Но с другой стороны, его отличает высокая прочность на сжатие.
Этот материал отличает и стойкость к износу. Это допускает применять его в узлах, работающих в условиях высокого трения. В таких условиях сильное воздействие оказывают антифрикционные параметры серого чугуна.
Большой объем углерода понижает плотность серого чугуна, она равна от 6,8 до 7,3 тонны на м 3 .
Включения углерода не позволяют выполнять неразъемные соединения из заготовок, выполненных из серого чугуна, с помощью сварки. Но, тем не менее, разработаны и применяют технологии сварочных работа, которые можно проводить при соблюдении ряд условий. В этот набор входят предварительный нагрев заготовок, применение специализированных электродов с высоким содержанием углерода. Плавное охлаждение шва, это необходимо для удаления напряжений в сварном шве. Но в любом случае, его структура заметно отличается от основного материала.
Маркировка
Металлургические комбинаты производят несколько марок этого материала. Его маркировку осуществляют следующим образом. Две буквы в начале аббревиатуры обозначают тип чугуна, маркировка серого чугуна начинается с СЧ, цифры, которые расположены после букв, говорят о пределе прочности во время растяжения
Принята следующая классификация серого чугуна:
- СЧ10 — ферритный;
- СЧ15, СЧ18, СЧ20 — ферритно-перлитные чугуны;
- начиная с СЧ25 — перлитные чугуны.
Состав серого чугуна и его структура
Параметры и свойства сплава напрямую зависят от режима охлаждения, дело в том, что именно во время охлаждения формируется структура материала.
В процессе медленного охлаждения происходит образование немалых кристаллов железа, а сочетание металла и углерода становится перлитным. В ходе такого охлаждения происходит не только увеличение размера кристаллов металла, но и углеродных включений. Такое сочетание приводит к тому, что перлитный материал имеет не только высокую прочность, но и повышенную хрупкость.
Оценка структуры СЧ определяет:
- размеры включений графита, измеряя в микрометрах (МКМ), их распределение, количество (в %), вид структуры металлической основы и при наличии перлита — его дисперсность.
По строению металлической основы серые чугуны делят на:
- перлитные — в составе структуры перлит и графит;
- ферритно-перлитные — феррит, перлит и графит;
- ферритные — структура состоит из феррита и графита.
Какая основа будет зависит от скорости охлаждения после затвердевания.
Для обозначения частей микроструктуры чугун этого типа используют терминологию определенную в ГОСТ 3443-87, например, пластинчатый графит обозначают буквами ПГ. Углерод включен в материал в следующих формах.
- пластинчатая прямолинейная, ее обозначают ПГФ1;
- пластинчатая завихреная — ПГФ2;
- игольчатая — ПГФ3;
- гнездообразная -ПГФ4.
Первоочередную значимость для приобретения требуемых параметров чугунной отливки имеет его структура, именно поэтому при выполнении заготовок требуется тщательное выполнение технологии плавления и заливания сырья. Для обретения требуемых параметров серого чугуна и устранения дефектов применяют операцию модификации.
В составе СЧ, в зависимости от его марки, могут входить следующие вещества:
Основа — Fe (железо), остальное:
- C (углерод) — 2,9-3,7%;
- Si (кремний) -1,2-2,6%;
- Mn (марганец) — 0,5-1,1;
- P (фосфор) не больше 0,2-0,3%;
- S (сера) не больше 0,12-0,15%.
Допустимо легирование серого чугуна с использованием таких веществ как Cr, Ni, Cu, и некоторыми другими элементами.
Кремний в составе увеличивает графитизацию углерода. Марганец несмотря на то что затрудняет графитизацию, улучшает его механические свойства.
Химический состав СЧ определен в ГОСТ 1412-85. Серый чугун производят во многих странах мира, в США аналогом этого материала считается A48-30B, в Британии BS 200 или 220, в КНР GB HT 20, в Европейском союзе EN-JL1030 FG20.
Применение
Серый чугун нашел свое применение при получении отливок разной формы, для которых требуется высокая прочность при сжатии. Эта характеристика важна в основном при производстве литых станин, предназначенных для изготовления станочного оборудования. Применение этого материала ограничено высокой хрупкостью готовых изделий. Особенно это проявляется при наличии серьезных нагрузок на изгиб.
Не так давно, литейные характеристики серого чугуна были использованы при изготовлении кухонной посуды и иной бытовой утвари, в частности, чугунки, сковородки и пр. Выпущенная, с использованием литья, продукция отличалась простотой в производстве и низкой себестоимостью.
В наши дни с использованием литья производят нагруженные компоненты машин, которые работают без изгибающих нагрузок, например, детали поршневой группы которые установлены в ДВС.
Детали высокой прочности, отлитые из этого материал, обладают небольшой стоимостью и длительным временем эксплуатации. Можно смело сказать, что литые станины и корпуса станочного оборудования – это вечные компоненты станочного оборудования, в сравнении с другими узлами оборудования.
Чугуны марки СЧ15, СЧ18, СЧ20 применяют для слабо нагруженных деталей. Это: фланцы, крышки, маховик, корпус редуктора.
Марки СЧ20 и СЧ25 используют, где требуется повышенная нагрузка на детали. Это: поршни цилиндров, блоки цилиндров двигателя, станина станка.
Марки повышенной прочности и износостойкости СЧ30, СЧ35, СЧ40, СЧ45 использую в зубчатых колесах, гильзах двигателей, распределительных валах, шпинделях, для деталей паровых котлов. Эти марки обладают высокой теплостойкостью.
Чугуны. Марки, свойства и их применение
Чугун – самый распространенный железоуглеродистый нековкий литейный материал, содержащий свыше 2% углерода, до 4,5% кремния, до 1,5% марганца, до 1,8% фосфора и до 0,08% серы. В практике применяют чугуны, содержащие 3÷3,5% углерода.
Чугун обладает высокими литейными свойствами, поэтому широко используется в литейном производстве в качестве конструкционного материала. Он хорошо обрабатывается резанием. Из чугуна, имеющего невысокий коэффициент трения, изготовляют подшипники скольжения. Специально обработанный чугун (высокопрочный) по показателям качества успешно конкурирует со стальным литьем и кованой сталью.
Недостаточная прочность и большая хрупкость чугуна объясняются наличием в нем крупных включений углерода в виде графита.
Введение в жидкий чугун небольшого количества магния и церия изменили форму графита, он стал шаровидным. Чугун приобрел прочность и утратил хрупкость. Такой чугун (его называют высокопрочным) по-своему качеству не уступает конструкционным углеродистым сталям. Стойкость деталей, изготовленных из этого чугуна, увеличилась почти в три раза.
Углерод в чугунах может находиться в виде химического соединения – цементита (такие чугуны называют белыми) или частично или полностью в свободном состоянии в виде графита – (такие чугуны называют серыми).
Чугуны состоят из металлической основы (перлита, феррита) и неметаллических включений графита. Они различаются главным образом формой графитовых включений. Белый чугун имеет ограниченное применение. Некоторые отливки, от которых требуется повышенная твердость поверхностного слоя, изготовляют из отбеленного чугуна. Поверхностный слой его состоит из белого чугуна, а сердцевина – из серого. Величину и твердость отбеленного слоя регулируют путем изменения химического состава чугуна и скорости затвердевания отливки.
Чугун серый
Серый чугун широко применяется в машиностроении. Такое название он получил по серому цвету излома, обусловленному наличием в структуре чугуна свободного углерода в виде графита. По виду металлической основы различают серые чугуны перлитные, перлитно-ферритные и ферритные.
Таблица 1. Чугуны серые литейные, их основные свойства и применение
Марка | σв МПа | НВ | Свойства и применение |
Сч10 | 275 | 139-274 | Малоответственные отливки с толщиной стенок до 15 мм (корпуса, крышки, кожухи и др.), детали, для которых прочностная характеристика не является обязательной,- опоки, арматуру, рамки, сковороды, декоративные детали, массивные строительные колонны, фундаментные плиты |
СЧ15 | 314 | 160-224 | Малоответственные отливки с толщиной стенок 10 – 30 мм (трубы, корпуса клапанов, вентили при давлении – до 20 МПа и др.), корпусные малонагруженные детали, подмоторные плиты, рычаги, шкивы, маховики, емкости для масла и охлаждающей жидкости, корпуса фильтров, фланцы, крышки, звездочки цепных передач |
СЧ18 | 354 | 167-224 | Ответственные отливки с толщиной стенок 10 – 20 мм (шкивы, зубчатые колеса, станины, суппорты и др.) |
СЧ20 | 397 | 167-236 | Ответственные отливки с толщиной стенок до 30 мм (блоки цилиндров, поршни, тормозные барабаны, каретки и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются требования герметичности при давлении до 8 МПа (80 кгс/см 2 ), корпусов, коробок передач, шпиндельных бабок, балансиров, планшайб, гильз, кареток, цилиндров, насосов, золотников, арматуры, компрессоров |
СЧ25 | 450 | 176-245 | Ответственные отливки с толщиной стенок до 40 мм (кокильные формы, поршневые кольца и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются повышенные требования к герметичности |
СЧ3О | 490 | 177-250 | Ответственные отливки с толщиной стенок до 60 мм (поршни, гильзы дизелей, рамы, штампы и др.), для изготовления кронштейнов, салазок столов и суппортов, деталей с поверхностной закалкой, цилиндров, корпусов насосов, дизелей и двигателей внутреннего сгорания, поршневых колец, коленчатых и распределительных валов |
СЧ35 СЧ45 | 540 | 193-264 | Ответственные высоконагруженные отливки с толщиной стенок до 100 мм (малые коленчатые валы, детали паровых двигателей и др.) деталей, для изготовления к которым предъявляются требования герметичности при давлении свыше 8 МПа |
Графит обладает низкими механическими свойствами. Он нарушает целостность металлической основы. Располагаясь между зернами металлической основы, графит ослабляет связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкую пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки к показателям стали, имеющей такую же структуру, как у металлической основы чугуна.
Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, повышает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.
Механические свойства серого чугуна могут быть улучшены равномерным распределением мелкопластинчатого графита в отливке. Это достигается путем специальной обработки – модифицирования, когда в жидкий чугун перед его разливкой вводят добавки, которые образуют дополнительные центры графитизации, в результате чего получается мелкопластинчатый графит. Чугун с таким графитом называют модифицированным. От обычного серого чугуна он отличается более высоким сопротивлением разрыву, однако пластичность и вязкость его при модифицировании не улучшаются.
По ГОСТ 1412-85 буквы СЧ в обозначении марки чугуна означают – серый чугун. Двузначная цифра соответствует пределу прочности при растяжении σв МПа. Стандарт нормирует предел прочности серых чугунов σв = 274÷637 МПа, твердость – 143÷637 НВ и химический состав.
Основные свойства серого чугуна и его применение приведены в таблице 1.
Чугун высокопрочный с шаровидным графитом
Высокопрочный чугун получают путем введения магния (до 0,9%) и церия (до 0,05%) в жидкий серый чугун перед разливкой его в формы. Основная часть этих модификаторов испаряется, окисляется и переходит в шлак, так что в твердом металле обнаруживается не более 0,01% этих элементов. Магний и церий активно удаляют из чугуна серу. Но главная роль их заключается в том, чтобы изменить чешуйчато-пластинчатую форму графита на шаровидную. После модифицирования чугуна магнием или церием в ковш добавляют 75%-ный ферросилиций (сплав железа с кремнием). В отличие от модифицированного серого чугуна высокопрочный чугун имеет более высокое содержание углерода и кремния и пониженное содержание марганца.
Металлическая основа высокопрочного чугуна состоит из феррита и перлита или только из перлита. В этом чугуне сочетаются ценные свойства стали и чугуна. Он обладает сравнительно высокой прочностью при достаточной пластичности и вязкости. Высокопрочный чугун с успехом заменяет стальное литье и даже стальные поковки, что дает большой экономический эффект. Изделия из высокопрочного чугуна благодаря его повышенной износостойкости могут работать в условиях трения. Высокопрочный чугун лучше, чем серый, сохраняет свою прочность при нагреве, поэтому может применяться для работы при температурах до 400°С (серый чугун выдерживает температуру до 250°С).
ГОСТ 7293-85 нормирует предел прочности σв, предел текучести σт, относительное удлинение δ и твердость НВ высокопрочных чугунов. Требования к отливкам из этих чугунов устанавливаются нормативно-технической документацией. Принцип маркировки высокопрочных чугунов (ВЧ) отличается от маркировки серых чугунов. В обозначение их марки входят два числа – первое указывает предел прочности на разрыв, второе – относительное удлинение. Например, марка чугуна ВЧ 42-12 означает, что данный чугун имеет предел прочности σв = 412 Н/мм 2 (42 кгс/мм 2 ) и относительное удлинение δ =12%.
Стандарт предусматривает 10 марок высокопрочных чугунов: ВЧ 38-17, ВЧ 42-12, ВЧ 45-5, ВЧ 50-7, ВЧ 50-2, ВЧ 602, ВЧ 70-2, ВЧ 80-2, ВЧ 100-2, ВЧ 120-2. Стандарт или справочник дает дополнительные сведения об этом чугуне: предел текучести σт = 274 Н/мм 2 (28 кгс/мм 2 ), твердость-140÷200 НВ.
Из высокопрочных чугунов изготовляют многие детали (в том числе фасонные), которые ранее получали из стали, базовые и корпусные детали повышенной прочности (корпуса и станины станков, крупные планшайбы, гильзы, каретки, цилиндры, кронштейны, зубчатые колеса, накладные направляющие станков и детали с поверхностной закалкой). Они заменяют стали Сталь 20Л, 25Л, ЗОЛ и 35Л.
Чугун ковкий
В структуре ковкого чугуна графит имеет хлопьевидную форму. Такой графит называют углеродом отжига. По сравнению с серым чугуном ковкий чугун обладает более высокой прочностью, пластичностью и вязкостью. Свое название он получил потому, что имеет повышенную пластичность. Ковке в прямом понимании этого слова чугун не подвергается.
Процесс получения отливок из ковкого чугуна включает две стадии: изготовление фасонных отливок из белого чугуна и отжиг полученных отливок с целью графитизации цементита. При отжиге происходит разложение цементита белого чугуна с образованием графита хлопьевидной формы. В результате этого хрупкие и твердые отливки становятся пластичными и более мягкими. В зависимости от условий и режима отжига структура чугуна может иметь ферритную (Ф), перлитную (П) и ферритно-перлитную металлическую основу. Наибольшее распространение получил пластичный ферритный ковкий чугун. Отжиг ковкого чугуна-весьма продолжительный процесс, занимающий 70-80 ч. Однако его можно ускорить путем закалки отливок из белого чугуна перед графитизацией, а также модифицированием чугуна алюминием, бором, висмутом или титаном. Существуют и другие способы ускорения процесса отжига. Использование указанных способов позволяет сократить продолжительность отжига до 35-40 ч.
Таблица 2. Чугуны ковкие, их основные свойства и применение
Марка | НВ | Свойства и применение |
КЧ 35-10 КЧ37-12 | 160 | Чугуны ферритного класса используют для производства деталей, эксплуатируемых при высоких динамических и статических нагрузках (картеров, редукторов, ступиц, крюков, скоб, задних мостов, кронштейнов) |
КЧ 30-6 КЧ 33-8 | 160 | Для изготовления менее ответственных деталей (хомутов, гаек, вентилей, деталей сельскохозяйственных машин, глушителей, фланцев, муфт, тормозных деталей, педалей, гаечных ключей, колодок, кронштейнов) |
КЧ 45-7 | 203 | Ковкие чугуны перлитного класса марок обладают высокой прочностью, умеренной пластичностью и хорошими антифрикционными свойствами. Из них получают вилки карданных валов, шестерни, червячные колеса, поршни, подшипники, звенья и ролики конвейерных цепей, втулки, муфты, тормозные колодки, коленчатые валы |
КЧ 50-5 | 226 | |
КЧ 55-4 | 236 | |
КЧ 60-3 | 264 | |
КЧ 65-3 | 264 | |
КЧ 70-2 | 280 | |
КЧ 80-1,5 | 314 |
По ГОСТ 1215-79 маркируется ковкий чугун по тому же принципу, что и высокопрочный. Например, марка чугуна КЧ 33-8 означает, что данный чугун имеет предел прочности σв = 32.4 Н/мм 2 (33 кгс/мм 2 ) и относительное удлинение δ =8 %.
Отливки из ковкого чугуна можно получить с сечением до 55 мм. При большем сечении в сердцевине отливок образуется пластинчатый графит и чугун становится не пригодным для отжига. В машиностроении чаще применяют высокопрочный чугун, который получают при менее сложных и более дешевых технологических процессах, чем процессы производства ковкого чугуна.
Основные свойства ковкого чугуна и его применение приведены в таблице 2.
Чугун легированный
Свойства чугуна можно улучшить путем введения в его расплав легирующих элементов, оказывающих благоприятное влияние не только на его металлическую основу, но также на форму и размеры графитных включений, способствующих значительному измельчению структуры чугуна.
Требования к легированным чугунам для отливок с повышенной жаростойкостью, коррозионной стойкостью, износостойкостью или жаропрочностью регламентированы ГОСТ 7769-82. По основному легирующему элементу чугуны со специальными свойствами подразделяют на пять видов: хромистые, кремнистые, алюминиевые, марганцевые и никелевые, маркируется легированный чугун по тому же принципу, что и высокопрочный. Буква Ч означает чугун, буква Ш – шаровидная форма графита, буквы русского алфавита, соответствующие легирующим химическим элементам, и цифры после букв означают приблизительное содержание легирующих элементов в целых процентах. Например, марка чугуна ЧХ16 означает, что данный легированный чугун содержит хрома 16%.
Основные свойства легированного чугуна и его применение приведены в таблице 3.
Таблица 3. Чугуны легированные, их основные свойства и применение
Классификация и маркировка чугунов
Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве.
В зависимости от состояния углерода в чугуне, различают:
Белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида, и чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава.
В соответствии с реальными условиями кристаллизации в структуре чугунов могут быть разные составляющие в зависимости от того, какая часть углерода оказывается в структурно свободном состоянии. Это же определяет название чугунов: белый, половинчатый, серый.
Белый чугун — это тот, в котором весь углерод находится в связанном состоянии.
Белый чугун для изготовления деталей машин не используют, поскольку он обладает высокой твердостью (НВ 450 — 550), хрупок и практически не поддается обработке режущим инструментом.
Половинчатый чугун тот, в котором одна часть углерода находится в связанном состоянии (Ссвяз. > 0,8 %), а другая в свободном
Излом половинчатого чугуна частично белый (в местах залегания ледебурита), частично серый (в местах, где расположены включения графита). Половинчатые чугуны, так же как и белые, для изготовления деталей машин не используются.
Серый чугун тот, в котором большая часть углерода или почти весь углерод находится в свободном состоянии, а в связанном состоянии может быть до 0,8 % С. В структуре серого чугуна имеется графит, количество, форма и распределение которого могут изменяться в широких пределах.
Название серый чугун получил по цвету излома — излом серого цвета.
В микроструктуре такого чугуна следует различать металлическую основу и включения графита, которые эту основу пронизывают.
Графит в сером чугуне может быть разным по форме включений: пластинчатым, хлопьевидным и шаровидным.
Поэтому серые чугуны (или просто чугуны) подразделяют на:
Отливки из серых чугунов широко применяют в машиностроении.
Такой чугун получают модифицированием расплава магнием. Магний вводят в жидкий чугун перед разливкой в количестве 0,03 — 0,07 %. Под воздействием магния при кристаллизации чугуна графит приобретает шаровидную форму.
По сравнению с пластинчатым графитом хлопьевидный графит располагается в металлической основе чугуна более компактно, включения графита не действуют как острые надрезы (что характерно для пластинчатого графита), и поэтому такие включения в меньшей степени ослабляют металлическую основу. Получают ковкий чугун путем специальной термической обработки белого доэвтектического чугуна примерно следующего состава: 2,5 — 3 % С; 0,7 — 1,5 % Si; 0,2 — 1 % Мn; до 0,2% S, до 0,18% Р.
Форма графитных включений мало влияет на твердость чугуна; однако на прочность и пластические свойства она оказывает значительное влияние.
Наиболее благоприятной формой графита является шаровидная, а пластинчатый графит снижает прочность и пластичность чугуна. Графит обладает низкими механическими свойствами, и включения графита действуют так, как будто бы в металлической основе имеются пустоты, внутренние надрезы, которые разобщают и ослабляют эту основу.
Включения графита пластинчатой формы действуют как острые внутренние надрезы или трещины, ослабляющие металлическую основу и уменьшающие прочность и пластичность чугуна. Чем крупнее пластинки графита и менее равномерно распределены по объему, тем меньше прочность чугуна при растяжении. При сжатии свойства чугуна с пластинчатыми включениями графита остаются достаточно высокими (разрушающая нагрузка при сжатии в три — пять раз больше, чем при растяжении), близкими к свойствам стали с такими же составом и структурой, что и металлическая основа чугуна. Это свидетельствует о том, что включения графита практически не влияют на прочность чугуна при сжатии. Они также менее значительно, чем при растяжении, снижают прочность чугуна при изгибающем действии нагрузки.
Чем компактнее форма включений графита и чем меньше их количество, тем в меньшей степени они ослабляют металлическую основу, тем выше прочность и пластичность чугуна при одной и той же структуре металлической основы. Так, чугун с шаровидной формой включений графита имеет значительно более высокую прочность при растяжении и изгибе, чем чугун с пластинчатой формой графитных включений (отсюда и название чугуна — высокопрочный).
Следует отметить, что в определенных случаях наличие графита в структуре полезно и дает чугуну преимущества перед сталью:
— включения графита облегчают обрабатываемость чугуна резанием (стружка делается ломкой);
— благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами, т. е. хорошо работает на трение;
— чугун с включениями графита обладает способностью быстро гасить вибрации, колебания;
— графит делает чугун практически нечувствительным к поверхностным надрезам и другим дополнительным дефектам на поверхности.
Следует также отметить хорошие литейные свойства чугуна, дающие ему преимущество по сравнению со сталью.
Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления при растяжении:
Примеры:
СЧ10 — серый чугун с пределом прочности при растяжении 100 МПа;
ВЧ70 — высокопрочный чугун с пределом прочности при растяжении 700 МПа;
КЧ35 — ковкий чугун с пределом прочности при растяжении примерно 350 МПа.
Антифрикционные чугуны используют для изготовления литых деталей (подшипников скольжения и др.), работающих в узлах трения со смазкой. Такие чугуны должны обеспечивать низкий коэффициент трения, а в связи с этим малые потери на трение и малую скорость изнашивания сопряженной детали (стального вала).
Маркировка антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др.
Расшифровывается следующим образом:
АЧ — антифрикционный чугун; С — серый, В — высокопрочный, К — ковкий.
Цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79.
Отбеленные чугунные отливки имеют на поверхности структуру белого чугуна, а в сердцевине — структуру серого чугуна. Отбел (на глубине 12 — 30 мм) является следствием быстрого охлаждения поверхности при отливке чугуна в металлические формы (кокиль) или в сырые земляные формы.
Отбеленный чугун имеет высокую твердость поверхности и обладает высокой износостойкостью, особенно в условиях абразивного износа. Отделенный чугун применяют для изготовления валков листовых прокатных станов, колес, шаров для мельниц и т. д. В этом случае применяют чугуны с пониженным содержанием кремния, что приводит к увеличению склонности чугуна к отбеливанию. Примерный химический состав чугуна: 2,8 — 3,6 % С; 0,5 — 0,8 % Si; 0,4 — 0,6 % Мn.
Серый чугун с пластинчатым графитом
В (табл. 1) — приведены механические свойства и рекомендуемый химический состав серого чугуна по ГСТ 1412-85, а в (табл. 2) — некоторые, не предусмотрены этим стандартам свойств чугуна. В общем случае, чем меньше графита, мельче и благоприятнее по распределению его включения, дисперснее перлит, мельче эвтектическое зерно, тем выше указанные свойства. Однако если σв, τ-1, τтв, φ зависят как от графита, так и 1 металлической основы, то Е — главным образом от графита, а НВ — почти полностью от структуры металлической основы. Малая чувствительность серого чугуна к надрезам иллюстрируется следующими данными по сопротивлению усталости чугуна при вибрации:
σв, МПа | 140 | 175 | 210 | 255 | 300 |
---|---|---|---|---|---|
σ-1, МПа: без надреза | 65 | 84 | 105 | 140 | 163 |
с надрезом | 65 | 80 | 95 | 120 | 130 |
Чугун | σв, МПа | Твердость HB∗10 -1 , МПа | Мас. доля элементов, % | ||||
---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | |||
не более | |||||||
СЧ10 | 98 | 143-229 | 3,5-3,7 | 2,2-2,6 | 0,5-0,8 | 0,3 | 0,15 |
СЧ15 | 147 | 163-229 | 3,5-3,7 | 2,0-2,4 | 0,5-0,8 | 0,2 | 0,15 |
СЧ18 | 176 | 170-241 | 3,4-3,6 | 1,9-2,3 | 0,5-0,7 | 0,2 | 0,15 |
СЧ20 | 196 | 170-241 | 3,3-3,5 | 1,4-2,2 | 0,7-1,0 | 0,2 | 0,15 |
СЧ21 | 206 | 170-241 | 3,3-3,5 | 1,4-2,2 | 0,7-1,0 | 0,2 | 0,15 |
СЧ24 | 235 | 170-241 | 3,2-3,4 | 1,4-2,2 | 0,7-1,0 | 0,2 | 0,15 |
СЧ25 | 245 | 180-250 | 3,2-3,4 | 1,4-2,2 | 0,7-1,0 | 0,2 | 0,15 |
СЧ30 | 294 | 181-255 | 3,0-3,2 | 1,0-1,3 | 0,7-1,0 | 0,2 | 0,12 |
СЧ35 | 343 | 197-269 | 2,9-3,0 | 1,0-1,1 | 0,7-1,1 | 0,2 | 0,12 |
Чугуны марок СЧ25 И выше обычно модифицируют FeSi. Для них содержание Si в таблице дано после введения модификатора.
Чугун | При растяжении | При сжатии | ||||||
---|---|---|---|---|---|---|---|---|
E∗10 -3 , МПа | δ, % | σ-1p, МПа | σc, МПа | E∗10 -3 , МПа | μ | ψ, % | δ-1c, МПа | |
СЧ10-СЧ18 | 60-80 | 0,2-1,0 | 50-70 | 500-800 | 65-90 | 0,28-0,29 | 20-40 | 70-90 |
СЧ20-СЧ30 | 85-125 | 0,4-0,65 | 90-115 | 850-1000 | 93-130 | 0,28-0,29 | 15-30 | 120-145 |
СЧ30-СЧ35 | 125-145 | 0,65-0,9 | 115-140 | 1000-1200 | 130-155 | 0,28-0,29 | 15-30 | 145-170 |
Чугун | При кручении | При срезе | φ, %, при вибрации с нагрузкой, равной 1/3σ0,2 | αн, кДж/М 2 | При изгибе | |||
---|---|---|---|---|---|---|---|---|
τв, МПа | τ-1, МПа | τв, МПа | G∗10 -3 , МПа | σ-1, МПа | σи, МПа | |||
СЧ10-СЧ18 | 240-320 | 60-80 | 150-220 | 40-44 | 30-32 | 40-70 | 58-66 | 240-360 |
СЧ20-СЧ30 | 280-360 | 100-120 | 250-355 | 45-54 | 23-30 | 80-100 | 67-133 | 400-500 |
СЧ30-СЧ35 | 360-400 | 120-140 | 355-400 | 54-64 | 23-25 | 80-90 | 133-155 | 500-540 |
φ — циклическая вязкость, характеризующая скорость затухания вибрации, а значит чувствительность к надрезам.
Влияние легирующих элементов на механические свойства чугуна марок СЧ показано на рис. 1, а изменение прочности серого чугуна в зависимости от толщины стенки отливки, получаемой в песчаной форме — на рис. 2.
Для различных групп отливок путем варьирования содержания химического состава основных элементов и легирования чугуна небольшими добавками обеспечивают комплекс оптимальных эксплуатационных свойств. Так, для блоков цилиндров карбюраторных двигателей чугун легируют Сr (0,2— 0,5 %) и Ni (до 0,2 %), а для автомобильных дизелей дополнительно Си (0,2—0,4%). Необходимые свойства Для тракторных двигателей обеспечивают повышенным (до 1,4 %) содержанием Мn.
Гильзы карбюраторных двигателей изготовляют из чугуна СЧ25 с обычным (0,14%) и повышенным (0,17— 0,22 %) содержанием фосфора.
Для ребристых цилиндров двигателей воздушного охлаждения используют чугун, легированный Sb (0,5—0,08%), Сr (0,4-0,6%) и Nl (0,1—0,3%) или Ni (0,65%) н Р (0,65—75%).
В станкостроении для повышения твердости средних по развесу отливок наряду с модифицированием чугуна FeSi и SiCa применяют ковшовое легирование Сu (0,3—0,4%) и Сr (0,2—0,3%). При толщине стенки более 15—20 мм используют легирование Сu (0,8—1,0%) и Сг (0,3—0,5%). Для средних и тяжелых отливок, в которых допускается наличие в микроструктуре карбидных включений, применяют комплексное легирование чугуна Мо (0,3—0,8%), Ni (0,7—1,2%) и Сr (0,2—0,6%). В отдельных случаях для повышения твердости применяют легирование В (0,04%) совместно с Сu (0,4—0,6%) или Ni (0,5—0,6%).
Рис. 1. Влияние легирующих элементов на прочность и твердость чугуна с пластинчатым графитом состава: 3,2% С; 1,85% Si; 0,7% Мn; 0,14% Р
Рис. 2. Изменение прочности серого чугуна различных марок в зависимости от толщины стенки отливки
Максимальная прочность чугуна при плавке в индукционных печах достигается при отношении Si/C=0,85÷l,0 (при постоянной степени эвтектичности). При получении чугунов СЧЗО, СЧ35, в случае ваграночной плавки, более низкое отношение Si/C=0,6÷0,7 компенсируют повышенным содержанием Мп (1,0—1,5%).
Герметичность отливок из чугуна зависит как от графитовой, так и от усадочной пористости; при этом, чем ниже эвтектичность серого чугуна, тем большее значение приобретают условия эффективного питания при затвердевании отливок (градиент температур, обеспечивающий направленное затвердевание, достаточный металлостатический напор).
Несмотря на наличие графита, герметичность чугуна достаточно велика, если в отливке отсутствуют литейные дефекты. Так, при испытании водой или керосином при давлении до 10—15 МПа втулки толщиной 2 мм имеют полную герметичность. Чугунные отливки с мелким графитом и низким содержанием Р при отсутствии волосяных трещин могут противостоять давлению жидкости до 100 МПа и газов до 70 МПа.
Свариваемость серого чугуна значительно хуже, чем у углеродистой стали; поэтому газовая и дуговая сварка, как и заварка дефектов (особенно крупных) на отливках, проводится по особой технологии.
Обрабатываемость серого чугуна обратно пропорциональна его твердости. Она улучшается по мере увеличения количества феррита в структуре, а также по мере повышения однородности структуры, т. е. при отсутствии в ней включений фосфид-иой эвтектики, карбидов, обладающих повышенной твердостью. Наличие графита полезно, так как стружка получается крошащейся и давление на инструмент уменьшается.