Что называется улучшением стали
Elton-zoloto.ru

Драгоценные металлы

Что называется улучшением стали

Улучшение стали

Улучшение стали – комплекс операций по проведению термической обработки, в который включены закалка и высокий отпуск. У обработанных деталей повышаются:

  • прочность;
  • пластичность;
  • вязкость ударная;
  • прочность усталостная;
  • снижается порог хладноломкости.

Сущность процесса улучшения

Процессу улучшения подвергаются конструкционные улучшаемые стали трех категорий:

  1. Углеродистые. Среднее содержание, которого находится в пределах от 0,25% до 0,6%.
  2. Малолегированные. Средне суммарное содержание легирующих элементов не более 3%.
  3. Среднелегированные. Количество вводимых элементов в пределах от 3% до 10%.

При закалке деталь подвергается нагреву до температуры на 30°С ниже чем в точке Ас1. На данном этапе необходимо обеспечить сквозную прокаливаемость. В детали преобладает внутренняя структура – мартенсит.

Структура улучшаемой стали

Высокий отпуск производится при температуре от 550°С до 650°С. За счет чего структура металла переходит в сорбит и получается однородной и мелкозернистой.

Максимального эффекта можно добиться если во время проведения закалки не образуется феррит и бейнит.

Термическое улучшение металлов позволяет менять такие показатели как:

  1. Прочностные характеристики:
    1. ϬВ – предел прочности;
    2. Ϭ0,2 – предел текучести;
    3. KCU – ударная вязкость;
  1. Характеристики пластичности:
    1. δ% — относительное удлинение;
    2. ψ% — поперечное сужение;
  2. Усталостные характеристики:
    1. Ϭ-1 – усталостная прочность;
    2. Ψ-1 – предел усталости при кручении;
  3. Твердость (НВ, HRC).

Технология проведения улучшения

При закалке, упрочнении, температура нагрева подбирается исходя из состава металла. Если для конструкционных среднеуглеродистых сталей ее можно подобрать согласно диаграммы железо-углерод, то для получения аустенита в металле содержащем легирующие элементы (хром, молибден, ванадий, никель и прочие) необходимо увеличить температуру нагрева.

Интенсивное охлаждение производится в двух средах: воде и масле. Охлаждению в воде подлежат углеродистые металлы, а в масле — легированные, так как водная среда может провоцировать образование внутренних трещин и деформаций.

Внутреннюю структуру мартенсит можно преобразовать средним или высоким отпуском. Температура проведения отпуска в значительной мере зависит от процентного содержания легирующих элементов.

Применение улучшения

После улучшения из углеродистых сталей производятся детали, на которые, которые требуют увеличенной прочности. Это детали типа вал, втулка, шестерня, зубчатое колесо, втулка. Использование углеродистых сталей обусловлено дешевизной изготовления и технологичностью.

Улучшение стали применяется при изготовлении червячного вала

Материалы с высоким содержанием углерода (60, 65) после улучшения используются для изготовления пружинных и рессорных изделий.

Введенные легирующие элементы позволяют изготавливать из этих сталей ответственные детали большего диаметра испытывающие более сильные нагрузки. После проведения термообработки у них сохраняется вязкость и пластичность с повышением прочности и твердости, а также понижается порог хладноломкости.

Прокаливаемость

Механические свойства элементов конструкции зависят от однородности структуры металла, которая напрямую зависит от сквозной прокаливаемости, минимального диаметра. Данный параметр характеризует образование более половины мартенсита. Так в таблице приведены некоторые показатели, при которых выдерживается критический диаметр.

Марка стали Проведение закалки при температуре, °С Критический диаметр, мм
Среда интенсивного охлаждения
вода масло
45 840…850 до 9 до 25
45Г2 840…850 до 18 до 34
40ХН2МА 840…850 до 110 до 142
38Х2МФА 930 до 72 до 86

Как показывает практика, на прокаливаемость большое влияние оказывают легирующие элементы. Особенно это заметно при наличии никеля. Его присутствие позволяет закаливать детали большого диаметра. Так из стали 40ХН2МА можно выточить и подвергнуть термообработке ответственную деталь диаметром свыше 100 мм с сохранением приданных свойств по всему объему.

Хладноломкость

Отрицательные температуры способствуют переходу в хрупкое состояние, что сказывается на показателях пластичности и ударной вязкости. При воздействии динамических нагрузок низких температур детали разрушаются. При подборе материала, из которого будут изготовлены детали, работающие в экстремальных условиях, в первую очередь пользуются таким параметром, как хладноломкость.

Порог хладноломкости в зависимости от содержания никеля

График характеризует, что повышенное наличие никеля увеличивает порог хладноломкости. Также на это значение оказывает влияние молибден.

Мелкозернистая структура, получаемая при высоком отпуске способствует увеличению показателя хладноломкости.

Зависимость порога хладноломкости от размера зерна

График показывает зависимость от размера зерна:

1 – размер зерна 0,002-0,01 мм;

2 – размер зерна 0,05-0,1 мм.

Наличие серы и фосфора отрицательно влияют на формирование мелкозернистой структуры.

Неправильный выбор материала для изготовления изделий, работающих в условиях крайнего севера и заполярья не раз приводил к катастрофическим последствиям. Например, вал, изготовленный из ст. 40 и прошедший улучшение в умеренном климате, работает не один год. А на Чукотке при морозе больше 50°С он сломается в первые месяцы эксплуатации.

Механические свойства после улучшения

У улучшаемых углеродистых сталей невысокая прокаливаемость. Поэтому стали с 30 по 50 используются для изготовления деталей диаметром не больше 10 мм. После улучшения для них характерны следующие параметры:

  • ϬВ (предел прочности) — 600…700 МПа;
  • KCU (ударная вязкость) – 0,4…0,5 МДж/м2;
  • HRC (твердость) – 40…50.

Если элементу по условиям эксплуатации требуется большая поверхностная прочность, то его подвергают закалке токами высокой частоты (ТВЧ).

Для изделий диаметром более 30 мм для придания качеств, полученных улучшением применяются легированные металлы. При высокой скорости закаливания, большего критического диаметра наряду с мелким зерном, у них наблюдаются малые остаточные напряжения после ТО и высокая стойкость к отпуску.

Так, сплав железа, имеющий в своем составе хром и никель, после улучшения имеет следующие параметры:

  • ϬВ (предел прочности) — 1020 МПа;
  • Ϭ-1 (предел усталости) – 14 Мпа;
  • ψ% (поперечное сужение) – 41%;
  • HВ (твердость) – 241.

Кроме широко используемых легирующих элементов для измельчения зерна используют титан, ниобий и цирконий. Для повышения прокаливаемости применяют бор.

Улучшение стали при изготовлении деталей

Для примера можно рассмотреть маршрут изготовления детали шестерня из стали 40ХН. Для данного типа деталей требуются высокие значения твердости рабочей поверхности, а также хорошая пластичность и вязкость.

Технологический процесс выглядит так:

  1. Получение заготовки объемной штамповкой.
  2. Отжиг. Твердость НВ = 172…175.
  3. Улучшение. Калить в масле при t = 820-840°С. Отпуск при t = 600-620°С. Твердость НВ = 241…244.
  4. Механическая обработка.
  5. Термическая обработка. Калить не глубже 3 мм. Затем низкий отпуск при t = 220°С. Твердость HRC 56…62.
  6. Шлифование зубьев.

Выбирая режимы термической обработки при улучшении следует учитывать следующие факторы:

  • степень легирования;
  • диаметр и размер заготовки;
  • переходы, являющиеся источниками напряжений;
  • прилагаемые динамические нагрузки;
  • условия работы;
  • требуемая твердость.

Улучшаемые стали

Улучшаемые стали — это конструкционные материалы:

  1. углеродистые;
  2. малолегированные;
  3. среднелегированные.
I II III
Углеродистые малолегированные среднелегированные
ГОСТ 1050-82 ГОСТ 4543-71 ГОСТ 4543-71
30-60 Морганцовистые 30Г-65Г, хромистые 30Х-40Х 38Х2МЮА и прочие, но с содержанием углерода не более 0,4%
Хроммолибденовые 30ХМ-40ХМ, 50Г2
Многокомпонентные 30-40ХГСА, 30-40ХМФА 45ХН2МФА

Легированные стали можно поделить на несколько категорий:

  • хромистые;
  • хромомарганцевые (хромансиль);
  • никелесодержащие;
  • с добавлением вольфрама и молибдена.

Особо стоит отметь плохую свариваемость улучшаемых металлов. Она производится при соблюдении некоторых мер, сохраняющих требуемые характеристики.

Учебные материалы

Улучшаемыми сталями называют среднеуглеродистые конструкционные стали, содержащие (0,3…0,5) % С, подвергаемые закалке от температуры 820…880 0 С и последующему высокотемпературному отпуску при 550…680 0 С. После такой термической обработки стали приобретают структуру сорбита, хорошо воспринимающую ударные нагрузки.

Хромистые стали

Для средненагруженных деталей небольших размеров применяют хромистые стали марок 30Х, 38Х, 40Х, 50Х. С увеличением содержания углерода возрастает прочность, но снижается пластичность и вязкость.

Прокаливаемость сталей невелика и для ее увеличения легируется бором (0,002…0,005%). Критический диаметр стали 35ХР при закалке в воде составляет 30…45 мм, а в масле 20…30 мм.

Введение 0,1…0,2 % ванадия (40ХФА) повышает механические свойства хромистых сталей, главным образом вязкость, вследствие лучшего раскисления и измельчения зерна без увеличения прокаливаемости. Эти стали применяют для изделий, работающих при повышенных динамических нагрузках. Значение механических свойств некоторых улучшаемых сталей после термообработки приведены в таблице 10.

Хромомарганцевые стали

Совместное легирование сталей хромом (0,9…1,2 %) и марганцем (0,9…1,2 %) позволяет получить достаточно высокую прочность и прокаливаемость (например, 40ХГ), однако они имеют пониженную вязкость, пониженный порог хладноломкости (от 20 0 С до минус 60 0 С). Введение титана снижает склонность к перегреву, а добавление бора увеличивает прокаливаемость.

Таблица 10 — Механические свойства некоторых легированных улучшаемых сталей

Марка
стали
Прокаливается диаметр, мм sigmaв,
МПа
sigma0,2,
МПа
d,
%
y,
%
KCU,
МДж/м 2
30X
40X
40XФА
40ХГТР
30ХГС
40ХН
30ХН3А
40ХН2МА
36Х2Н2МФА
38ХН3МФА
25-35
25-35
25-35
50-75
50-75
50-75
75-100
75-100
более 100
более100
900
1000
900
1000
1100
1000
1000
1100
1200
1200
700
800
750
800
850
800
800
950
1100
1100
12
10
10
11
10
11
10
12
12
12
45
45
50
45
45
45
50
50
50
50
0,7
0,6
0,9
0,8
0,4
0,7
0,8
0,8
0,8
0,8
Читать еще:  Как узнать латунь или бронза

Хромокремнемарганцевые стали

Они обладают высокой прокаливаемостью и механическими свойствами. К ним относятся стали марок 20ХГС, 25ХГС, 30ХГС. Стали хромансил применяют в виде листов и труб для ответственных сварных конструкций. При введении дополнительно никеля 1,4…1,8 % (30ХГНА) прочность стали повышается: s igma в =1650 МПа, sigma 0,2 = 1400 МПа.

Хромоникелевые стали

Обладают высокой прокаливаемостью, прочностью, хорошей вязкостью. Применяются для изготовления крупных изделий сложной конфигурации, работающих при вибрационных и динамических нагрузках. Никель, особенно в сочетании с молибденом, сильно снижает порог хладноломкости. Чем выше содержание никеля, тем ниже допустимая температура применения стали и выше ее сопротивления хрупкому разрушению. Рекомендуется вводить до 3 % Ni. При большем содержании получается много остаточного аустенита. Для тяжелонагруженных деталей с диаметром сечения до 70 мм используют стали марок 40ХН, 45ХН, 50ХН.

Хромоникелемолибденованадиевые стали

Кроме молибдена, добавляют ванадий, который способствует получению мелкозернистой структуры. Стали марок 38ХН3МФ и 36Х2Н2МФА применяют для деталей больших сечений (1000…1500 мм и более). В сердцевине после закалки образуется бейнит, а после отпуска — сорбит. Стали обладают высокой прочностью, пластичностью и вязкостью, низким порогом хладноломкости. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температурах 400…450 0 С при изготовлении наиболее ответственных деталей турбин, компрессоров, для которых требуется материал особой прочности в крупных сечениях (поковки валов и цельнокованных роторов турбин, валы высоконапряженных турбовоздуходувных машин, детали редукторов и т.д.).

Улучшение и нормализация. Режимы. Получаемые структуры и свойства.

Нормализация заключается в нагреве доэвтектоидной стали до тем-ры на 40-50С выше Ас3, заэвтек-ной – на 40-50С выше Асm, выдержке и охлаждении на воздухе. Норм-ция вызывает полную перекрис-цию стали, устраняет крупнозернистую структуру. Быстрое охлаждение на воздухе приводит к распаду А при более низких тем-рах, что повышает дисперсность ф-ц смеси. После нормализации получаются структуры: С+Ф – в доэв-ных сталях ; С- в эвтектоидных; С+Ц2 – в заэвт-ных.

Термическую обработку, состоящую из закалки и высокого отпуска, называют улучшением. Такая термообработка создает наилучшее сочетание прочности и вязкости стали и применяется для деталей машин из среднеуглеродистых сталей, испытывающих статистические и особенно динамические или цилиндрические нагрузки(валы, шатуны, оси, крепежные детали). получаем Сотп.

Алюминиевые сплавы.ихклассификация,маркировка,структура и применение.

Алюминиевые сплавы. Характерной особенностью алюминия являются малый удельный вес (2,72 г/см3), низкая температура плавления (658°С), высокая пластичность (относительное удлинение 8 =40—60%), низкая прочность и твердость (твердость НВ=30 кг/мм2; предел прочности =80—100 МПа), высокая электро- и теплопроводность, высокая коррозионнная стойкость. Алюминий имеет кубическую гранецентрированную решетку (К12).

Классификация ал-х сплавов:

Сплавы,неупрочняемые то. Структура этих сплавов состоит из однородного твердого раствора элементов на основе алюминия.

Упрочнение в этих сплавах можно получить путем нагартовки (холодной обработки давлением). К этим сплавам, кроме чистого алюминия, относятся следующие марки АМЦ (А1—Мп); АМГ (Al—Mg). Предназначаются данные сплавы для изготовления деталей методом глубокой штамповки в холодном состоянии.применение:эти сплавы для изготовления строительных конс-ий(витражи,дври..),емкостей для жидкостей.

Сплавы, упрочняемые термической обработкой. К ним относятся сплавы алюминия с медью, магнием, марганцем, цинком, никелем, железом и другими элементами.

Дуралюмины 1Д1. ДЗ, Д6, Д16 и т.п.) – это сплавы системы AI-Cu-Mg Основным легирующим элементом является медь
(3,8-4,8%Сu). количество магния от 0.5 до 1.5% Кроме того, сплавы содержат марганец (около 0,5% Мn) и в качестве примесей Fe и Si.

Дуралюмины после литья имеют структуру альфа+тета(II), причем частицы тета(II) залегают по границам зерен и охрупчивают сплав (рис 103а).

Термическая обработка дуралюминов заключается в закалке
и старении.

Применение:для изготовления деталей и элементов конструкций среднего и вовышеннойпрочности,требующих долговечности при переменных нагрузках.Дюралюмин Д16 исп-т для изготовления обшивок,шпангоутов,лонжеронов самолетов)

2.литейные алюминиевые сплавы.силумины-сплавы ал-я с кремнием(АК12,АК9,АК7)Распространенный силумин АК12 содержит 11-13% си.В равновесном(литом)состоянии сплав явл. заэв-м и состоит из эвтектики(альфа+си)крупноигольчатого строения и включений хрупких первичныхкристаловкремния.для повышения мех св-в проводят модифицирование.структура модифицированного сплава состоит из кристалов альфа-твердого ра-ра и мелкозернистой эвтектики.доэв-е сплавы АК9(8-10%СИ)Иак7(6-8%си)ДОПОЛНИТЕЛЬНО СОДЕРЖАТ МАГНИЙ(ДО0.3%..0,4%)и могут упрочняться закалкой с последующим старением за счет выделения частиц упрочняющей фазы Mg2SI.ПРИМЕНЯЮТ:ДЛЯ ИЗГОТОВЛЕНИЯ МЕЛКИХ(ак12),А ТАКЖЕ СРЕДНИХ И КРУПНЫХ(ак9,ак7)литых деталей(корпусов компрессоров,картеровдвс)

3.порошковые-получаемые методами порошковойметалургии:

Спеченные ал. порошки –это сплавы ал-а-ал2о3.структура представляетсобой ал-ю матрицу с равномерно распределенными мелкодисперсными включениями ал2о3,кот обеспечивают дисперсионное упрочнение сплава.в зав-и от содержания оксида ал-ия(от 6 до 22%)различают 4 марки сплавов от сап-1 до сап-4.применяют:для деталей,работающих при температурах 300-500 град,от кот требуется высокая прочность и корозионная стойкость(штоки,лопатки компрессоров..)

Спеченные алюмин-е сплавы-это порошковые сплавы систем ал-си-ни(сас-1)и ал-си-фе(сас-2).сас-1 содержит 25-30%си,5-7%ни,остальное ал.сплав имеет структуру,содержащую дисперсные включения кремния и интерметалидов.применение-заменяют стали при изготовлении отд-х деталей приборов,работающих в паре со сталью.

Выбрать материал для пружины диаметром 3 и 20 мм. Подобрать режим термической обработки. Полученные структура и свойства.

для пружины диаметром 3 мм – 70

ТО – закалка + СО

свойства- высокий предел упругости, достаточная пластичность и вязкость.

Кремний повышает прокаливаемость, увеличивает предел текучести и упругости

Билет №3

Влияние пластической деформации на свойства сталей. Наклеп. Механизм пластической деформации: скольжение и двойникование.

Пластическая деформация – это деформация, которая сопровождается изменением формы и размеров образца. При этом изменяется структура и свойства.

Механизмы пл. деф.:

-скольжение(сдвиг)-сдвиг атомных плоскостей друг относительно друга под действием касательных напряжений, протекает по плоскостям с наиболее плотной упаковкой атомов в направлениях с минимальными межатомными расстояниями, где сопротивление сдвигу наименьшее

-двойникование – осуществляется путем переориентации одной части кристалла зеркально симметрично относительно другой.

Величину пластической деформации определяют степенью пластической деформации ε = (Н0 – Н)/ Н0;

где Н0 и Н размер образца до и после деформации.

С увеличением степени пл. деф. прочность, твердость повышаются, а пластичность, ударная вязкость понижаются

Наклеп (нагартовка) – упрочнение металла при пластической деформации.оно вызвано:

-увеличением плотности дислокаций

-искажением кристаллической решетки

перемещение дислокаций в плоскости скольжения через весь кристалл приводит к смещению соответствующей части кристалла на одно межатомное расстояние.(при скольжении)

На диаграмме изотермического превращения переохлажденного аустенита нанести кривые охлаждения при закалке, нормализации и отжиге. Опишите характерные особенности каждой термообработки, получаемые структуры и свойства.

Отжиг закл-сяв нагреве стали до определенной тем-ры,выдержке и послед-ем медленном охлаждении.Охлаждение происходит вместе с печью. Цель- получение равновесной структуры.

-Ф+П- в доэвтектоидных сталях(Ф+П)

-П- в эвтектоидных сталях(П)

-П+Ц2 – в заэвтектоидных сталях

Виды отжига 1-го рода:

Рекристаллизационный отжиг применяется для снятия наклепа и зак-ся в нагреве холоднодеформированной стали выше тем-ры рекристаллизации на 150-250С, выдержке и послед охлаждении. Снижение твердости и повышение пластичности. Отжиг для снятия напряжений примен-ся для отливок, деталей, сварных изделий после обработки резанием.

Диф-ный отжиг прим-ся для легир сталей с целью выравнивания хим.состава и уменьшения внутрикристаллической ликвации, кот повышает слонность стали к хрупкому разрушению, понижает пластичность и вязкость. Т нагрева до 1100-1200С. В рез-те получется структура Ф+П с крупным зерном.

Виды отжига 2-го рода:

Поный отжиг- нагрев доэв-ных сталей на 30-50 С выше тем-ры Ас3,выдержка и охлаждение вместе с печью.Цели- измельчение зерна, повышение ударной вязкости; улучшение обрабатываемости резанием за счет снижения твердости и повышения пластичности; снятие внутренних напряжений. Полный отжиг для заэвтектоидных сталей не применяется.

Неполный отжиг – нагрев до – и заэвтек-ных сталей выше тем-ры Ас1, выдержка, охлаждение в печи. Неполный отжиг доэв-ных сталей применяют вместо полного, если не требуется измельчение зерна. Заэв-ные стали подвергают только неполному отжигу, нагрев вызывает практически полную перекристаллизацию, проводится для получения структуры зернистого перлита. Сталь с зернистым перлитом имеет более низкие значения твердости и прочности, более высокую пластичность.

Изотермический отжиг – проводится для легир сталей и состоит в нагреве выше линии Ас3,быстром охлажд-и, изотремической выдержке в теч-е 3-6ч, послед охл-е на воздухе. Сокращает длительность процесса, получается более однородная ф-п структура.

Нормализация заключается в нагреве доэвтектоидной стали до тем-ры на 40-50С выше Ас3, заэвтек-ной – на 40-50С выше Асm, выдержке и охлаждении на воздухе. Нормализация вызывает полную перекристаллизацию стали, устраняет крупнозернистую структуру. Быстрое охлаждение на воздухе приводит к распаду А при более низких тем-рах, что повышает дисперсность ф-ц смеси .После нормализации получаются структуры: С+Ф – в доэв-ных сталях ; С- в эвтектоидных; С+Ц2 – в заэвт-ных. . Назначение нормализации различно в зависимости от состава стали: для низкоуглеродистых( до 0,3%)- нормализ-ю применяют вмсто отжига, она явл-ся более экономичной,т.к. меньше времени затрачивается на охлаждение стали. Для среднеуглеродистых(0,3-0,5%)- нормализ-ю применяют вместо закалки и высокго отпуска(улучшения), снижается ударная вязкость. Для высокоуглеродистых(заэв-ных) – нормализ-ю применяют перед последующей термообработкой для устранения цементитной сетки. Для высоколегированных – нормализ-я может применяться вместо закалки, т.к. охл-е таких сталей на воздухе обеспечивает получение структуры М.

Читать еще:  Сколько весит лист металла 4 мм

Закалка заключается в нагреве доэвт-ных сталей на 30-50С выше Ас3, заэв-ных на 20-30С выше Ас1,выдерже и послед охл-и со скоростью выше критической. Цель: получение структуры мартенстита. Закалка не явл-ся окончательной операцией, чтобы уменьшить хрупкость и напряжение, получить требуемые мех-киесво-ва, сталь после закалки подвергают отпуску

Последнее изменение этой страницы: 2016-07-16; Нарушение авторского права страницы

Статья на тему: “Термообработка сталей и сплавов. Нормализация и улучшение.”

Термообработка сталей и сплавов. Нормализация и улучшение.

Термическая обработка металлов, процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

Отжиг. Это процесс термической обработки, состоящий в нагреве стали до определенной температуры, выдержке при ней и последующем медленном охлаждении с целью получения более равновесной структуры. Особенностью отжига является медленное охлаждение.

Диффузионный отжиг (гомогенизирующий) применяют для уменьшения химической неоднородности стальных слитков и фасонных отливок. Слитки (отливки), особенно из

легированной стали, имеют неоднородное строение. Неоднородность строения обусловлена карбидной ликвациями, так как в местах образования карбидов или в средней части дендритов возникают скопления легирующих элементов. Для выравнивания химического состава слиток или отливку нагревают до высокой температуры, при которой атомы элементов приобретают большую подвижность. Благодаря этому происходит перемещение атомов из мест с большей концентрацией химических элементов в места с меньшей концентрацией. В результате такой диффузии обеспечивается выравнивание химического состава слитка или отливки по объему.

Для обеспечения необходимой скорости диффузии атомов отжиг стали проводят при высокой температуре (1100-1200°С) с выдержкой 10-20 ч.

Полный отжиг применяют для стали в основном после горячей обработки поковок давлением и отливок с целью измельчения зерна и снятия внутренних напряжений. Это достигается нагревом стали на 30-50°С выше верхней критической точки Ас 3 и медленным охлаждением.

При нагреве стали выше температуры Ас 3 перлит превращается в аустенит. Это происходит путем образования в начальной стадии мельчайших зародышей кристалликов аустенита и постепенного их роста по мере повышения температуры. При небольшом превышении температуры Ас 3 (на 30-50°С) образовавшиеся кристаллики аустенита остаются еще мелкими. В дальнейшем, при охлаждении ниже температуры Ас 1 образуется однородная мелкозернистая структура ферритно-перлитного типа. При этом в пределах одного аустенитного зерна возникает несколько перлитных зерен, которые значительно мельче, чем аустенитное зерно, из которого они образовались.

Температуру нагрева деталей, изготовленных из углеродистых сталей, определяют по диаграмме состояния, а для легированных сталей – по положению их критической точки Ас 3 , имеющейся в справочных таблицах.

Время выдержки при отжиге складывается из времени, необходимого для полного прогрева детали, и времени, нужного для окончания структурных превращений.

Изотермический отжиг заключается в том, что сталь нагревают до температуры на 30-50°С выше точки Ас3 (конструкционные стали) и выше точки Ас 1 на 50-100°С (инструментальные стали). После выдержки сталь медленно охлаждают в расплавленной соли до температуры несколько ниже точки Аг 1 (680-700°С). При этой температуре сталь подвергают изотермической выдержке до полного превращения аустенита в перлит, а затем охлаждают на спокойном воздухе. Изотермический отжиг сокращает продолжительность термической обработки небольших по размерам изделий из легированных сталей в 2-3 раза по сравнению с полным отжигом. Для крупных изделий такого выигрыша по времени не получается, так как требуется большое время для выравнивания температуры по объему изделия. Изотермический отжиг является лучшим способом снижения твердости и улучшения обрабатываемости резанием сложнолегированных сталей, например 18Х2НЧВА.

Сфероидизирующий отжиг обеспечивает превращение пластинчатого перлита в зернистый, сфероидизированный. Это улучшает обрабатываемость сталей резанием. Отжиг на зернистый перлит производят по режиму: нагрев стали немного выше точки Ас 1 с последующим охлаждением сначала до 700°С, затем до 550-600°С и далее на воздухе. Сфероидизирующий отжиг применяют для сталей, содержащих более 0,65% углерода, например шарикоподшипниковые стали типа ШХ15.

Рекристаллизационный отжиг применяют для снятия наклепа, вызванного пластической деформацией металла при холодной прокатке, волочении или штамповке. Наклепом называют упрочнение металла, появляющееся в результате холодной пластической деформации металла. При холодной прокатке, штамповке, волочении зерна металла деформируются, дробятся. Это повышает твердость металла, снижает его пластичность и вызывает хрупкость. В этом и заключается сущность наклепа.

Рекристаллизационный отжиг выполняют путем нагрева до температуры ниже Ас 1 (650-700°С), выдержки и последующего замедленного охлаждения. При нагреве металла до 650-700°С (рекристаллизационный отжиг) возрастает диффузионная подвижность атомов и в твердом состоянии происходят вторичное кристаллизационные процессы (рекристаллизация).

На границах деформированных зерен возникают новые центры кристаллизации, вокруг которых заново строится решетка. Вместо старых деформированных зерен вырастают новые равноосные зерна и деформированная структура полностью исчезает.

При этом восстанавливаются первоначальная структура и свойства металла.

Нормализация. Термическую операцию, при которой сталь нагревают до температуры на 30-50°С выше верхних критических точек Ас 3 и Аc m , затем выдерживают при этой температуре и охлаждают на спокойном воздухе, называют нормализацией.

При нормализации уменьшаются внутренние напряжения, происходит перекристаллизация стали, измельчающая крупнозернистую структуру металла сварных швов, отливок или поковок.

Нормализация стали по сравнению с отжигом является более коротким процессом термической обработки, а, следовательно, и более производительным. Поэтому углеродистые и низколегированные стали подвергают, как правило, не отжигу, а нормализации.

С повышением содержания углерода в. Стали увеличивается различие в свойствах между отожженной и нормализованной сталью. Для сталей, содержащих до 0,2% углерода, предпочтительнее нормализация. Для сталей, содержащих 0,3-0,4% углерода, при нормализации по сравнению с отжигом существенно увеличивается твердость, что необходимо учитывать. Поэтому нормализация не всегда может заменить отжиг.

Сплавы после нормализации приобретают мелкозернистую структуру и несколько большую прочность и твердость, чем при отжиге. Нормализацию применяют для исправления крупнозернистой структуры, улучшения обрабатываемости стали резанием, улучшения структуры перед закалкой. В заэвтектоидной стали нормализация устраняет сетку вторичного цементита.

Стали, подвергаемые термическому улучшению, широко применяют для изготовления различных деталей, работающих в сложных напряженных условиях (при действии разнообразных нагрузок, в том числе переменных и динамических).

Стали приобретают структуру сорбита, хорошо воспринимающую ударные нагрузки. Важное значение имеет сопротивление хрупкому разрушению.

Улучшению подвергаются среднеуглеродистые стали с содержанием углерода 0,30-0,50%.

Улучшаемые углеродистые стали 35, 40, 45 дешевы, из них изготавливают детали, испытывающие небольшие напряжения (сталь 35), и детали, требующие повышенной прочности (стали 40, 45). Но термическое улучшение этих сталей обеспечивает высокий комплекс механических свойств только в деталях небольшого сечения. Стали этой группы можно использовать и в нормализованном состоянии.

Детали, требующие высокой поверхностной твердости при вязкой сердцевине (зубчатые колеса, валы, оси, втулки), подвергаются поверхностной закалке токами высокой частоты. Для снятия напряжений проводят низкий отпуск.

Улучшаемые легированные стали.

Улучшаемые легированные стали применяют для более крупных и более нагруженных ответственных деталей. Стали обладают лучшим комплексом механических свойств: выше прочность при сохранении достаточной вязкости и пластичности, ниже порог ломкости.

Хромистые стали 30Х, 40Х, 50Х используются для изготовления небольших средненагруженных деталей. Эти стали склонны к отпускной хрупкости, поэтому после высокого отпуска охлаждение должно быть быстрым.

Повышение прокаливаемости достигается микролегированием бором (35ХР). Введение в сталь ванадия значительно увеличивает вязкость (40ХФА).

Хромокремнистые (33ХС) и хромансил (25ХГСА) стали обладают высокой прочностью и умеренной вязкостью. Стали хромансилы обладают высокой свариваемостью, из них изготавливают стыковочные сварные узлы, кронштейны, крепежные и другие детали. Широко применяются в автомобилестроении и авиации.

Читать еще:  Как и чем почистить золотую цепочку

Хромоникелевые стали 45ХН, 30ХН3А отличаются хорошей прокаливаемостью, прочностью и вязкостью, но чувствительны к обратимой отпускной хрупкости. Для уменьшения чувствительности вводят молибден или вольфрам. Ванадий способствует измельчению зерна.

Стали 36Х2Н2МФА, 38ХН3ВА др. обладают лучшими свойствами, относятся к мартенситному классу, слабо упрочняются при нагреве до 300-400 o С. из них изготавливаются валы и роторы турбин, тяжело нагруженные детали редукторов и компрессоров.

1.Что такое термообработка сталей? Для каких целей проводят термообработку? Как изменяется структура и свойства сталей и сплавов после термообработки?

2. Какие виды термообработки вы знаете?

3.Что такое нормализация, улучшение стали при термообработке? Какие стали подвергают таким методам термообработки?

Нормализация стали: описание и характеристики

Часто в производственных целях возникает необходимость изменить параметры стали, одним из способов это выполнить является термообработка. По своему принципу большинство технологий термообработки предусматривают изменение строения сталей посредством нагрева, выдержки и охлаждения.

Несмотря на то что все эти технологии имеют одинаковые цели и принцип работы, все они отличаются по температурным и временным режимам. Термическая обработка может быть как промежуточным, так и окончательным технологическим процессом во время производства. В первом случае материал так готовится к последующей обработке, а во втором ему придают новые свойства.

Одной из таких технологий является нормализация стали. Так называют термообработку, при которой материал прогревается до температуры на 30−50 градусов выше Аст или Ас3, а затем его охлаждают на спокойном воздухе.

Принципы нормализации

Как и другие технологии термообработки, нормализация может быть как промежуточной, так и окончательной операцией по улучшению структуры стали. Чаще всего она используется в первом случае, в качестве окончательной процедуры нормализация преимущественно используется при производстве сортового проката вроде рельс, швеллеров и не только.

Ключевая особенность нормализации заключается в том, что сталь нагревается до температуры, которая на 30−50 градусов превышает верхние критические показатели, а также производят выдержку и охлаждение материала.

Та или иная температура выбирается в зависимости от типа материала. Заэвтектоидные материалы нормализуются при температуре между точками Ас 1 и Ас 3, а вот доэвтектоидные — при температуре выше Ас 3. В итоге материалы первого типа получают одинаковую твердость, поскольку в раствор переходит углерод в одинаковом количестве, также в одинаковом количестве фиксирует аустенит. Структура включает в себя цемент и мартенсит.

Благодаря такому составу увеличивается износостойкость и твердость заэвтектоидного материала. Если высокоуглеродистая сталь нагреется больше Ас 3, то увеличится рост зерен аустенита и, соответственно, повысятся внутренние напряжения. Также увеличится концентрация углерода, в итоге температура мартенситного превращения снизится. В итоге материал становится менее прочным и твердым и поддается изменению.

А доэвтектоидная сталь при нагреве свыше критического показателя становится очень вязкой. Это объясняется тем, что в низкоуглеродистой стали образуется мелкозернистый аустенит. Этот компонент после охлаждения преобразуется в мелкокристаллический мартенсит. Температурные показатели в промежутке между Ас 1 и Ас 3 нельзя применять для обработки, поскольку в таком случае структура доэвтектоидной стали получает феррит, что снижает после нормализации ее твердость, а после отпуска — и механические свойства.

От степени гомогенизации структуры материала зависит время выдержки. Нормативным показателем является час выдержки из расчета на 25 мм толщины. Интенсивность охлаждения в той или иной мере определяет размеры пластин и количество перлита.

Эти величины — взаимозависимы. Еще больше перлита будет формироваться с повышением интенсивности охлаждения, сокращается расстояние между пластинами и их толщина. Все это повышает твердость и прочность нормализованного материала. Вследствие низкой интенсивности охлаждения образуется материал с меньшей твердостью и прочностью.

Если обрабатываются предметы с большими перепадами сечения, то нужно снижать термическое напряжение, чтобы не допустить коробления во время нагрева или охлаждения. Также перед началом работы их следует нагреть в соляной ванне.

Во время снижения температуры изделия до нижней критической точки можно охлаждение ускорять посредством помещения его в воду или масло.

Назначение процесса

Нормализация призвана менять микроструктуру стали, она выполняет следующее:

  • снижает внутренние напряжения;
  • посредством перекристаллизации измельчает крупнозернистую структуру сварных швов, отливок или поковок.

Цели нормализации могут быть совершенно разные. С помощью такого процесса твердость стали можно повысить или снизить, это же касается прочности материала и его ударной вязкости. Все зависит от механических и термических характеристик стали. С помощью данной технологии можно как сократить остаточные напряжения, так и улучшить степень обрабатываемости стали с помощью того или иного метода.

Стальные отливки такой обработке подвергают в следующих целях:

  • для гомогенизации их структуры;
  • чтобы увеличить подверженность термическому упрочнению;
  • чтобы снизить остаточные напряжения.

Изделия, полученные посредством обработки давлением, подвергают нормализации после ковки и прокатки, чтобы сократить разнозернистость структуры и ее полосчатость.

Нормализация вместе с отпуском нужна для замены закалки изделий сложной формы или же с резкими перепадами по сечению. Она позволит не допустить дефектов.

Еще эта технология применяется, чтобы улучшить структуру изделия перед закалкой, повысить его обрабатываемость посредством резки, устранить в заэвтектоидной стали сетку вторичного цемента, а также подготовить сталь к завершающей термической обработке.

Сталь марки 45 и ее особенности

Даная сталь является сплавом железа и углерода. Стать марки 45 благодаря своей твердости пользуется традиционным высоким спросом в разных промышленных отраслях. В данном сплаве доля железа составляет порядка 45 процентов. Свойства материала непосредственно связаны с его легирующими элементами и количеством углерода, что очень важно при производстве изделий для металлопроката. Тот или иной температурный режим обработки позволяет получить прочное изделие. После нормализации твердость марки 45 непосредственно связана с температурой во время работы.

Данная сталь — углеродистая конструкционная. Нормализацию следует проводить на улице, а не в специальной печке, в отличие от других этапов обработки. Марка 45 просто и быстро поддается механическим видам обработки, в частности:

На основе этой стали производят такие изделия:

  • бандажи;
  • кулачки;
  • цилиндры;
  • шестерни;
  • коленчатые и распределительные валы;
  • вал-шестерни;
  • шпиндели.

Другие методы термической обработки

Кроме нормализации, термическая обработка стали включает в себя такие процессы:

  • отжиг;
  • закалка;
  • отпуск;
  • обработка криогенным способом;
  • дисперсионное твердение.

Принцип выполнения и цели у каждой технологии одинаковые, однако, каждая имеет свои отличительные особенности:

  • отжиг — благодаря ему структура перлита будет максимально тонкой, поскольку охлаждение происходит в печи. Отжиг позволяет снизить структурную неоднородность, а также напряжение после обработки посредством литья или под давлением, придать структуре мелкозернистость или улучшить обработку резанием;
  • закалка — принцип технологии такой же, но температуры более высокие по сравнению с нормализацией и скорость охлаждения тоже выше. Процесс происходит в жидкостях. Благодаря закалке повышается прочность и твердость материала, а детали в итоге будут иметь низкую ударную вязкость и хрупкость;
  • отпуск — отпуск, выполняемый после закалки, снижает напряжение и хрупкость. С этой целью материал прогревается до малой температуры и охлаждается на улице. На фоне повышения температуры предел прочности и твердость падают, и повышается ударная вязкость;
  • криогенная обработка — благодаря ей материал будет иметь равномерную структуру и твердость, эта технология максимально подходит для закаленной углеродистой стали;
  • дисперсионное твердение — окончательная обработка, в ходе которой дисперсные частицы выделяются в твердом растворе после закалки при малом нагреве для придания материалу прочности.

Для выполнения термической обработки потребуется следующее:

  • баки с водой и маслом;
  • бумага шлифовальная;
  • микроскоп металлографический;
  • печь с термоэлектрическим пирометром;
  • твердомеры по Роквеллу;
  • наборы микрошлифов (сорбит, мартенсит, феррит-мартенсит и т. д. ).

Выбор способа термообработки для стали

Нормализацию или другой способ термической обработки стали выбирают в зависимости от концентрации в ней углерода. Если материал содержит его в количестве до 0,2%, то наиболее приемлемым способом является нормализация. Если углерода присутствует 0,3−0,4%, то подойдет как нормализация, так и отжиг.

Выбирать тот или иной способ обработки также следует в зависимости от требуемых свойств. Например, нормализация придаст изделию мелкозернистую структуру, а по сравнению с отжигом — большую твердость и прочность.

Во многих случаях нормализация является наиболее предпочтительным методом обработки материалов, поскольку имеет немало преимуществ по сравнению с другими. Во многих отраслях, в частности, машиностроении, его используют для термообработки чаще всего.

Ссылка на основную публикацию
Adblock
detector