- Что такое анодирование титана
- Анодирование стали, алюминия
- Операция анодирования и ее специфика
- Этап 1. Подготовка поверхности металла
- Этап 2. Протравливание (декапирование) поверхности металла
- Этап 3. Анодирование металла
- Устройства и инструменты
- Установки для анодирования металлов и их конструктивные особенности
- Анодирование различных типов металла
- Особенности анодирования меди и ее сплавов
- Особенности анодирования серебра
- Особенности анодирования титана
- Особенности анодирования алюминия
- Для чего нужно анодирование металлов
- Что такое анодирование титана
- Какого цвета должен быть титан?
- Что такое анодирование титана?
- Зачем нужна зеркальная полировка украшений?
- Что такое черный титан?
- Что такое анодирование титана
- Технология и способы анодирования титана
- Цель анодирования титана
- Способы и методы
- Холодный метод
- Теплый метод
- Анодирование титана в домашних условиях
- 3 способа анодирования металла
- Откуда появился сам термин
- Что дает анодирование
- Устройства, оборудование, реактивы
- Способы анодирования
- Тёплый метод
- Холодный метод
- Твёрдое анодирование
- Преимущества анодированных поверхностей
- Анодирование разных металлов
- Нержавеющая сталь
- Титан
- Серебро
- Анодирование алюминия
- Заключение
Что такое анодирование титана
Анодирование стали, алюминия
Под анодированием металла понимается процедура наращивания оксидной пленки при помощи анодного окисления. Данная процедура может проводиться практически для любых металлов. Но чаще всего речь идет о стали, алюминии и цветных металлах (в основном титане и тантале). В свою очередь анодирование меди и железа оказывается весьма затруднительно. Связано это с тем, что обозначенные металлы образуют не один устойчивый оксид, а два. Это негативно сказывается на адгезии и существенно увеличивает риск растрескивания оксидной пленки.
Операция анодирования и ее специфика
Здесь видно 2 ванны с промывочной жидкостью (синего цвета) и жидкостью для анодирования (зеленная жидкость)
Анодирование металла как процедура не представляет собой особенной сложности и при желании может быть произведена собственными силами. Выполнение данной операции подразумевает выполнение следующих этапов работы:
Этап 1. Подготовка поверхности металла
Прежде чем приступать к анодному окислению, поверхность металла следует тщательно подготовить: отполировать, отшлифовать. Обезжиривание поверхности производится при помощи органических растворителей (например, бензина, ацетона или спирта). Затем поверхность обрабатывается любой щелочью. В домашних условиях может быть использован обыкновенный мыльный раствор. Черные металлы отлично обезжириваются при помощи раствора едкого калия или натра, который предварительно нагревается до 80 градусов. Что касается алюминия, для него лучше подойдет 10% раствор фосфорнокислотного натрия.
Этап 2. Протравливание (декапирование) поверхности металла
Протравливание металлической поверхности производится с целью удаления окислов, которые препятствуют качественному нанесению нового покрытия. Для проведения процедуры применяется серная кислота (в соотношении 80 миллилитров кислоты на 100 миллилитров вводы с добавлением 2 граммов хромпика.
Этап 3. Анодирование металла
Процесс анодного окисления металла осуществляется в электролитном растворе под воздействием постоянного тока. Важно чтобы емкость, в которой производится анодирование, не пропускала ток. В качестве электролита чаще всего используется 20% раствор серной кислоты.
Сам процесс анодного окисления происходит следующим образом. К аноду при помощи специальной подвески производится крепление изделия из металла, а к катоду – свинцовой пластины (для изделий сложной формы потребуется несколько свинцовых пластин). Расстояние до пластины при этом должно быть не более девяти сантиметров. Процедура проводится при температуре 20 градусов. При этом плотность электрического тока должна варьироваться от 2 до 3 А/кв. дм. Напряжение требуется от 12 до 15 В. Весь процесс занимает порядка одного часа.
Устройства и инструменты
Прежде чем приступать к анодному окислению, следует подготовить следующее оборудование и инструменты, которые потребуются для выполнения работы:
- фольга из алюминия;
- перчатки резиновые;
- пластиковый контейнер для размещения металлического изделия;
- батареи 9В (от 1 до 8 шт.);
- изолированный кабель (около полутора метров);
- электролитный раствор;
- ложка;
- органический растворитель;
- стакан из пластика;
- клещи;
- устройство, предназначенное для зачистки кабелей.
Установки для анодирования металлов и их конструктивные особенности
Любая крупная установка для анодного окисления – это достаточно непростой комплекс, включающий в себя электрическое, химическое и механическое оборудование. При его выборе следует учитывать ряд значимых моментов:
- Самые высокие эксплуатационные затраты приходятся на процедуры разгрузки, а также загрузки. И именно это делает анодное окисление весьма трудоемкой процедурой.
- Максимальную пропускную способность установка для анодирования определяет мощность выпрямител постоянного тока, при помощи которого и производится анодное окисление. Чаще всего используется выпрямитель с мощностью 25 Ватт. Хорошо, если установка имеет бесступенчатую регулировку напряжения под нагрузкой от нуля до максимального показателя, а также автоматическую функцию возвращения напряжения по окончании цикла в ноль. Качественное анодное окисление предполагает наличие оксидной пленки на поверхности металла. В самом начале процесса анодирования пленка относительно тонкая и имеет маленькое сопротивление. Соответственно, для того, чтобы поддерживать плотность тока достаточно небольшого напряжения. В процессе наращивания толщины оксидной пленки ее сопротивление возрастает, соответственно ток падает. Для того, чтобы на протяжении всей процедуры поддерживалась одинаковая плотность тока, напряжение нужно постепенно и плавно увеличивать. И именно здесь бесступенчатая регулировка напряжения установки для анодирования окажется весьма к месту.
- Контакты между пластинами и шинами предполагают точность конструкции. Поэтому желательно по концам ванн анодирования установить гибкие контактные площадки (например, из меди)
Анодирование различных типов металла
Особенности анодирования меди и ее сплавов
Чаще всего анодирование меди и ее сплавов осуществляется химическим или электрохимическим способами. В результате поверхность материала в большинстве случаев приобретает цветное покрытия.
Для получения пленки из меди применяется кислая или цианистая жидкость. Медные сплавы, в состав которых входят легирующие металлы повергаются анодному окислению намного сложней.
Особенности анодирования серебра
Анодное окисление серебра позволяет придать изначально белому металлу черный, фиолетовый либо синий оттенок без изменения структуры и качественных характеристик обрабатываемого материала. Обработку серебряных изделий специалисты рекомендуют производить при помощи серной печени. При проведении анодирования серебро начинает менять цвет примерно через полчаса. После того, как изделие обретет необходимый цвет, его необходимо достать из жидкости и тщательно промыть сначала горячей, потом теплой и, наконец, холодной водой.
Особенности анодирования титана
Анодирование титана представляет собой обязательную процедуру, основное значение которой заключается в повышении показателя износоустойчивости данного металла. Наличие оксидной пленки придает изделию химическую прочность и изменяет цвет поверхности покрытия. Использоваться для анодного окисления титана могут хромовая, щавелевая или любая другая кислота.
Зависимость цвета оксидной пленки титана от напряжения тока при оксидировании.
Особенности анодирования алюминия
Анодное окисление алюминия требуется, независимо от того, что этот металл может отлично выглядеть и после экструзивной обработки. Связано это с тем, что алюминий в большой степени подвержен коррозии. К тому же он под воздействием целого ряда негативных внешних факторов легко разрушаться.
Для чего нужно анодирование металлов
Сфера применения анодного окисления достаточно разнообразна. Металлы, подвергшиеся анодному окислению, приобретают:
- отличные защитные свойства;
- однородную поверхность;
- отсутствие полос и царапин;
- высокие декоративные характеристики
В последнее время достаточно высокой востребованностью пользуется именно декоративное анодирование металло, которое может производиться как вместе с механической обработкой, так и без таковой.
Ниже представленно коротенькое видео операции анодирования алюминия.
Что такое анодирование титана
Титаном в украшениях для пирсинга обычно называют сплав Ti6AL 4VEli Gr23 со спецификацией ASTM F-136. Сплав Ti6AL 4VEli Gr23 является самым распространённым титановым сплавом, применяемым в медицине, а так же в военной, космической и химической промышленности. Из за большого спектра применения сплава для каждого из них были разработаны разные спецификации. Самые распространенные спецификации сплавов разрабатывает американская компания ASTM, по которым работает большинство металлургических фабрик. Кроме этого для пирсинга иногда используется чистый титан Grade1 спецификации ASTM F-67, тоже применяемый в медицине. Спецификации ASTM F-136 и ASTM F-67 – это стандарты, которые описывают химические, механические и металлургические требования для использования изделий из титана в имплантационных целях без изменений химического состава. Недобросовестные производители пирсинга часто заменяют титан Ti6AL 4VEli Gr23 на более «грязный» аналог Ti6AL 4V Gr5, в котором сильно увеличены допуски примесей. В таблице можно посмотреть химический состав титановых сплавов, где Grade1 – чистый титан, Grade2 – его аналог с большим допустимым количеством примесей.
Химический состав
Химический элемент
ASTM Grade
Какого цвета должен быть титан?
Титановый сплав может иметь различные оттенки, от темно-серого до почти серебряного (который на внешний вид не отличить от хирургической стали). Цвет титанового сплава зависит от количества примеси железа в нем (например, у марки Steel and Silver содержание железа 0,042% при допустимом 0,25% в Gr23 и 0,4% в Gr5), что делает сплав очень светлым и идеальным для анодирования ну и, конечно, от качества полировки (чем полировка лучше — тем изделие светлее). При большом содержании железа в сплаве (но еще допустимом, например 0,2%) — украшение для пирсинга будет иметь темный оттенок и очень плохо анодироваться примерно после 65 вольт (украшение станет темно-серо матовым с розовым или фиолетовым оттенком, до бирюзового, а тем более до зеленого такое украшение точно не дотянет).
Что такое анодирование титана?
Как вы поняли выше — титан можно проанодировать, то есть придать украшению из титана нужный вам цвет. С помощью пропускания постоянного тока нужного вольтажа через титановое украшение в дистиллированной воде (со специальным средством от образования накипи) на нем образуется тонкая пленка из оксида титана необходимого цвета. Она делает украшение более гладким на микроуровне, что хорошо сказывается на заживлении. Уже проанодированное украшение, например синего цвета, всегда можно проанодировать повторно с большим вольтажом, например, в золотой. А уже, наоборот, из золотого сделать синий оттенок не получится. Срок службы анодирования зависит от места ношения украшения, например в языке оно начать стираться через несколько месяцев, а в мочке уха анодирование будет хорошо себя чувствовать и в течение нескольких лет.
Зачем нужна зеркальная полировка украшений?
Все мы знаем, что плохо отполированное украшение может царапать канал, а так же в неровностях украшения могут скапливаться выделения, которые являются рассадником бактерий, увеличивающие срок заживления прокола. Но от качества полировки так же сильно зависит появление аллергии на алюминий, ванадий и примеси, содержащиеся в минимальных количествах в титановом сплаве ASTM F-136. При качественной полировке украшения на микроуровне — поверхность украшения становится максимально гладкой, что дает возможность образования оксидной пленки, которая предотвращает диффузию атомов титанового сплава в прокол.
Что такое черный титан?
Анодировать титановое украшение в черный цвет невозможно, но зато есть PVD и IP покрытия. По качеству стойкости и внешнему виду эти покрытия одинаковые и на готовом изделии определить каким способом оно было нанесено невозможно. Отличается только технология нанесения покрытия. PVD(Physical Vapour Deposition) — это способ нанесения прочного и износостойкого слоя в вакууме конденсацией пара из частиц вещества, выбранного для напыления. Это приводит к образованию тонкой и очень прочной молекулярной пленки (PVD покрытия) толщиной от 1 до 3 мкм, благодаря которой украшение становятся гладким и устойчивым к царапанию. IP(Ion plating) — это процесс направления на металл потока ионов вещества, выбранного для покрытия, которые образуют очень прочный тонкий слой толщиной 1–2 мкм, что делает украшение гладким и устойчивым к царапинам. Для покрытия украшений для пирсинга в качестве напыляемого материала используются чистый титан (для напыления черного цвета, а так же всех цветов анодированного титана), чистое золото и цирконий, которые являются полностью гиппоалергенными.
Что такое анодирование титана
Тема создана для обмена опытом,так что не стесняемся,пишем,кидаемся ссылками,сам делал и в интернете многое видел,но всё найти,посмотреть,прочитать я не смогу.
Пришлось вытащить информацию по анодированию из старого компа.Думаю,это будет полезным.Сам начинал пробовать,почитав темы из мастерской,но информации не хватало,приходилось много экспериментировать.
Что нужно для анодирования в домашних условиях:
Источник питания 2-5А постоянного тока с регулировкой от 1 до 150В с шагом 1В.Я использую автотрасформатор 2А с выпрямителем.
Измеритель этого самого напряжения.У меня стрелочный вольтметр на корпусе ЛАТРа,больше используется как индикатор работы ЛАТРа и цифровой тестер для точного контроля.
Ёмкость под электролит для анодирования.В зависимости от электролита из стекла,пластика,металла.У меня колба от термоса из нержавейки,заодно служит катодом.
Электроды,анод обязательно из титана с возможность крепления обрабатываемой детали.Крепёж так же обязательно титановый.Катод может быть из любого металла.
Провода,чтобы всё это соединить.
Сам электролит,т.е. любая токопроводящая жидкость,кола,спрайт,уксус и т.п.Не рекомендую соль и соду,язвочки могут образоваться при напряжении выше 30В.Я последнее время использую лимонную кислоту,она не пахнет.
Этот же набор подходит для анодирования алюминия.
Начнём с того,что не все марки титана подходят для анодирования.Наибольшая цветовая гамма и насыщенные цвета можно получить на сплавах ВТ-20 и ВТ-6.На сплавах,содержащих молибден и хром качество анодных плёнок более низкое.Сплавы,содержащие марганец,типа ОТ-4 не очень подходят для анодирования из-за малой цветовой гаммы и особенно из-за неравномерности покрытия(фото будут ниже).У чистого титана также ограничена цветовая гамма.Это в основном теория,сами знаете,не многие продавцы знают марку титана,а на зуб её не определить ,нужно пробовать анодировать.
Дальше,картинки соответствия цвета и напряжения не соответствуют истине,точнее соответствуют определённым условиям,т.е. используемому электролиту,температуре электролита,плотности тока,марке титана, которые не указаны.
Анодирование титановых сплавов позволяет получить различные интерференционно —
окрашенные окисные пленки (коричнево-желтые, синие, голубые, различные оттенки желтого цвета,
включая розовый, малиновый, а также различны оттенки зеленого цвета).
На титановых сплавах можно получить и различно окрашенные участки поверхности. Это может быть
достигнуто последовательным погружением изделия в электролит с соответствующим уменьшением
подаваемого напряжения. Можно использовать и метод повторного анодирования изделия при
соответствующей изоляции поверхности. Процесс анодирования начинается с более высокого
напряжения. Особенность такого окрашивания в том, что различно окрашенные участки поверхности
могут находится рядом, не влияя друг на друга.
Реально сейчас насыщенный зелёный получил только на проволоке марки ХЗ,розовый не получил ни разу,малиновый получился только при 170В,когда уже должен был получится защитный слой серого или тёмно-серого цвета.Но марка титана ХЗ вообще загадочная
Это ОТ-4,электролит уксус,напряжение 75В,время 5мин.
Реально цвет от половой краски до золота,но пятнами.Поверхность подготовлена,про подготовку поверхности ещё напишу.
Здесь знаменитая марка ХЗ и попытка получить защитное покрытие,а не декоративное.Попытка почти удалась,покрытие заметно твёрже поверхности титана.А почти потому ,что покрытие неоднородно и при одинаковых условиях и одном куске титана сильно отличается.Причину тоже знаю,электролит за время опытов сильно нагрелся,а для качественного покрытия он должен быть холодным.
Пока готовлюсь писать дальше,предлагаю посмотреть видео,правда без звука.Не очень хорошо,но видно как изменяется цвет в зависимости от напряжения.Скоро будет второе видео,получше будет видно.Источник тока автотрансформатор с выпрямителем 2А,электролит лимонная кислота,марка титана не извесна.
В результате получилось переливчатое серо-зелёно-малиновое покрытие,которое второй час пытаюсь сфотографировать.Глаз видит а объектив нет.Придётся ждать до завтра.
Кажется здесь видно лучше,звук тоже убрали,сам лоханулся со звуковой дорожкой,все мои коменты пропали.Кому интересно-спрашивайте,постараюсь оперативно ответить(сп.здел,извиняюсь,рядом с интернетом буду только в пятницу)
Теперь про подготовку поверхности.На каком-то из форумов читал,что подготовка не нужна.Возможно это подходит для маленьких деталей типа винтиков,шпеньков,бонок.Для более крупных по площади деталей подготовка поверхности важна.Покрытие получается более насыщенным по цвету,более равномерным и более стойким.
Как это делается на производстве:
V. Подготовка поверхности изделий к анодированию
Детали и изделия монтируют на титановые подвески и крепят зажимами или болтами из титана,
что обеспечивает хороший контакт элементов конструкций с медными штангами.
Обезжиривание шлифованных и отпескоструенных изделий проводит в 1%-ном растворе
сульфанола НП-3 при 40-50ОС в течении 1-2 мин. или в 1%-ном растворе КМ-1 70-80ОС, 1-2 мин.
Обезжиривание полированных деталей проводят в смеси кислот:
10 — 75 г CrO3 + 100 мл H2SO4 (уд. вес 1,84), при комнатной температуре, продолжительность
обработки до 1мин.
Этот состав может быть также использован для удаления с анодированных полированных изделий
захватов от пальцев и других жировых пятен.
После обезжиривания детали промывают, неоднократно погружая их сначала в горячую
(80-90ОС), затем в холодную воду. Обмен воды — 1 объем в час.
Травление производят в следующих растворах:
1. 10% азотной кислоты (уд. вес 1,34) + 2% плавиковой кислоты (40%);
2. 44% азотной кислоты (уд. вес 1,34) + 10% плавиковой кислоты (40%).
Температура раствора комнатная. Продолжительность травления 1-2 мин.
Примечание: Первый раствор используют лишь для травления титана и малолегированных
титановых сплавов.
Облагораживание проводится с целью удаления окисных слоев и способствует получению ярких и
чистых тонов анодно — окисных пленок. Облагораживание проводится в растворе следующего
состава (мл/л):
Азотная кислота (уд. вес 1,4) 700 + 50;
Фтористоводородная кислота (уд. вес 1,13) 200 + 20;
Вода остальное
Режим: температура раствора не выше 28ОС, время обработки от 30 с до 10 мин.
Про подвеску на титан кстати очень важно,электрод к обрабатываемой детали,если она полностью погружена в электролит,обязательно должен быть из титана,иначе ни чего не выйдет.
Теперь про то как я подготавливаю поверхность «на коленке»:
Травление в щавелевой кислоте,если деталь не полируется,наверное годится любая кислота,пока не пробовал.Облагораживать не в чем,поэтому основная обработка-шлифовка наждачкой 1000грит.Важно хорошо промыть после этого,даже когда деталь не пачкает руки или ,например фильтровальную бумагу сухую,которой я пользуюсь,таже бумага с растворителем заметно чернеет.Лучше промывать рядом с ёмкостью для анодирования и сразу опустить деталь в электролит.
Если марка титана известна,начинаем процесс.Задача-плавно и достаточно быстро поднять напряжение с 0 до напряжения,соответствующего нужному цвету.
Если марка титана ХЗ,то опять же плавно но достаточно медленно поднимаем напряжение до,как нам кажется,нужного цвета.Поэтому и колу не рекомендую использовать-в пузырьках и так плохо видно,а в коле не видно ничего.Достаём деталь,промываем,протираем,сушим,смотрим.Попали в цвет-повезло,ещё не достигли нужного-тоже повезло,опускаем в электролит и повторяем всё по новой,останавливаясь на более высоком напряжении.А вот если цвет проскочили,то всё посложнее.Нужно убрать покрытие и снова подготовить поверхность.И снова в электролит и так до нужного цвета.
Теперь завимость цвета от напряжения и марки шлифованного или стпескоструенного титана.Но это для промышленных предприятий,там другое оборудование,другой электролит и другие возможности.
ВТ20,ВТ6
8В Светло-коричневый
10В Коричневый
12В Лиловый
15В Тёмно-синий
20В Синий
25В Тёмно-голубой
30В Голубой
35В Светло-голубой
40В Слабовыраженный светло-зелёный
45В Светло-жёлтый
50В Жёлтый
55В Жёлто-розовый
60В Светло-розовый
65В Розовый
70В Розово-малиновый
75В Малиново-фиолетовый
80В Бирюзовый
85В Зелёный
87В Жёлто-зелёный
ВТ14,ВТ15,ВТ16,ВТ3-1,4201.
8В Светло-коричневый
10В Коричневый
12В Лиловый
15В Тёмно-синий
20В Синий
25В Тёмно-голубой
30В Голубой
35В Светло-голубой
40В Слабовыраженный светло-зелёный
45В Светло-жёлтый
50В Жёлтый
55В Жёлто-розовый
60В Светло-розовый
65В Розовый
70В Розово-малиновый
75В Тёмно-бирюзовый
80В Зеленовато-жёлтый
ВТ1-0,ВТ5-1.
8В Светло-коричневый
10В Коричневый
12В Лиловый
15В Синий
20В Светло-синий
25В Голубой
30В Бледно-жёлтый
35В Светло-жёлтый
40В Жёлтый
ОТ4,ОТ4-1.
8В Светло-коричневый
10В Коричневый
12В Лиловый
15В Тёмно-синий
20В Синий
25В Голубой
30В Светло-голубой
И основные ошибки.
Торопиться не надо.
Почти на всех видео процесс протекает очень быстро.Сам такое снял,только потому,что смотреть 10 мин.на бурление пузырьков никому не интересно.Даже в прозрачном электролите из-за них ничего не видно,нужно выключить ИП,чтобы увидеть,что получается.При быстром увеличении напряжения пузырьков гораздо меньше и заметно изменение цвета,это и показывает видео.
На верхних фото результат анодирования очень не удобного для этого титана ОТ4.Попытка получить голубой цвет.Напряжение 25В,электролит лимонная кислота,время 20мин.Конечно долго,но площадь пластины примерно 300 кв.см.Заметна зависимость качества от подготовки поверхности.На верхнем фото слева наждачка 320грит,справа 1000грит,на нижнем старый оксидный слой не тронут.
Нельзя экономить на электролите,при промышленном анодировании концентрация кислоты в среднем 200 г/л.Желательно перемешивать электролит в процессе анодирования,особенно при небольшом объёме,можно воспользоваться аквариумным компрессором.
Обязательно качественно промыть деталь после электролита и высушить.
Например,не смытая кола за ночь серьёзно портит покрытие.И как эту гадость пьют
О трудностях фотографирования Очередная попытка получить зелёный на титане неизвесной марки,превысил напряжение на несколько вольт,в результате глаз видит золото,на солнце под некоторым углом вылезает полированная медь,а объектив увидел это:
Если долго мучиться. Не ровно,бледно,но всё же зелёный.Так и не понял,как получилось,был малиновый,достал из банки,вернул на место и получил яркий зелёный,поигрался с напряжением,вольт туда-сюда и . бледный с пятнами.Всё таки марку титана очень полезно знать.
Технология и способы анодирования титана
Анодирование титана в домашних условиях. Процесс анодного оксидирования поверхностей титановых сплавов. Преимущества и недостатки процедуры. Способы осуществления оксидного анодирования самостоятельно.
Анодированием металла называют электрохимическую обработку, в результате которой на поверхности объекта обработки образуется оксидная пленка. Барьерное покрытие прекрасно предохраняет изделие из титана от окислов и ржавчин, а также имеет декоративный внешний вид. Процедуру анодирования металлических сплавов можно осуществить самостоятельно, используя подручные средства.
Цель анодирования титана
В процессе анодирования изделие из титана покрывается оксидной пленкой, которая образуется из самого металла в результате электрохимической реакции.
Анодирование изделий из титана также называют анодным оксидированием. Если сравнивать анодирование в условиях промышленного производства с применением специального оборудования и самостоятельное покрытие оксидной пленкой, то, конечно, второй способ несколько уступает качеством результата. Но тем не менее металл, обработанный в домашних условиях, приобретает ряд неоспоримых преимуществ:
- Оксидная пленка выполняет защитные функции, не позволяя влаге проникнуть к металлической основе изделия. Барьер предотвращает образование коррозии, что продлевает сроки эксплуатации предметов быта из титанового сплава.
- Анодирование титана укрепляет поверхность изделия и делает его более устойчивым к различным видам внешних повреждений.
- Металлические изделия после анодного оксидирования частично или полностью теряют способность проводить электрический ток.
- Посуда с оксидным покрытием выдерживает длительный нагрев, обладает антипригарными свойствами и не выделяет токсичных веществ во время приготовлении пищи.
- Если изделие из титана прошло оксидную обработку, это не является препятствием к другим видам обработки посредством гальванизации.
- Регуляция силы тока и составляющих электролитической жидкости позволяют сделать оксидное покрытие не только более прочным, но и красивым. Применение красителей позволит придать изделию привлекательный внешний вид.
Анодирование титана в условиях производства позволяет провести более глубокую обработку деталей, однако даже в домашних условиях можно добиться повышения износостойкости металлических изделий.
Способы и методы
Холодный метод
Согласно уравнению оптимальная температура, при которой необходимо осуществлять процессы анодирования по данной технологии, – 0 °C. Однако допустимы колебания от –10 до +10 °C. Именно при таких температурных нормах происходит образование прочной и целостной оксидной пленки на поверхности детали из титанового сплава. Холодный метод позволяет в домашних условиях провести процедуру твердого анодного оксидирования.
При правильной регулировке силы тока можно осуществить напыление с помощью гальваники, используя в качестве материала золото, медь или хром. Такое барьерное покрытие защитит изделия из титана от окислов и ржавчин, что продлевает срок его службы до нескольких десятков лет.
Главный недостаток такой технологии анодирования – невозможность дальнейшей покраски объекта обработки.
Теплый метод
Технология предусматривает использование органических красителей, благодаря которым металлу можно придать удивительно красивый декоративный вид. Подойдут как готовые красящие составы, так и подручные красители из домашней аптечки: йод, зеленка, марганцовка, йодинол и прочее.
К сожалению, такая технология не рассчитана на проведение твердого анодирования. Барьерные свойства оксидной пленки очень слабые, как и защита от механических повреждений. Однако при дальнейшем окрашивании оксидное покрытие проявляет высокие адгезивные способности. Эмалевые краски прекрасно сцепляются с таким покрытием, и в свою очередь обеспечивают изделию из титана надежную защиту от коррозии.
Анодирование титана в домашних условиях
В домашних условиях анодирование осуществляется по следующей схеме:
- В контейнер, который не обладает электропроводимостью (стекло или пластмасса), помещают электролит.
- Собирается электрическая цепь, где источником электрического тока с постоянным напряжением может выступать блок питания (аккумулятор).
- Изделие из титана, которое нужно обработать, подключается зажимом к положительному заряду, после чего помещается в резервуар с электролитическим раствором.
- К отрицательному заряду крепятся пластины из нержавеющей стали из свинца, после чего также погружаются в электролит.
Если деталей, подключенных к «-», несколько, их необходимо расположить на одинаковом расстоянии от титанового сплава.
- Цепь активируется с помощью источника электрического тока, после чего деталь из титана начинает выделять кислород, способствующий образованию оксидного покрытия.
Не стоит забывать о предварительной подготовке изделия из титанового сплава к процедуре анодирования. Детали необходимо очистить от загрязнений и элементов ржавчины, после чего отполировать и промыть чистой водой. Титановый сплав должен несколько часов провести в щелочном растворе, после чего поверхность изделия тщательно обезжиривается.
Только после вышеперечисленных подготовительных мер титан можно погружать в электролит и приступать к анодированию.
Если у вас есть опыт проведения процедуры анодирования титана в домашних условиях, вы можете поделиться им в комментариях.
3 способа анодирования металла
Защищать металлические изделия от агрессивного воздействия внешней среды можно по-разному. В том числе покрытием красками на масляной, глифталевой, пентафталевой, полиэфирной и эпоксидной основе – с разной степенью адгезии и разной долговечностью. Но ничто не сравнится с анодированием — таким методом защиты, как создании с помощью электрохимического процесса защитной оксидной плёнки. Анодирование также называют — анодным оксидированием.
Оксидировать можно практически все металлы и сплавы, кроме чистых железа и меди. Связано это с тем, что эти два металла образуют сразу два оксидных соединения на своей поверхности. Как бы конкурирующих друг с другом, и потому это плохо сказывается и на прочности самой оксидной плёнки, и на её адгезии (то есть связанностью) с поверхностью.
Откуда появился сам термин
При электрохимическом создание оксидной плёнки на поверхности металлов деталь/изделие опускают в ванну с электролитом. Чаще всего это раствор кислоты. Электролиты электропроводны (что ясно из самого названия). Когда через раствор пропускают постоянный ток (это важно, чтобы ток постоянно шёл в одном направлении!), на катоде выделяется водород, а на аноде – кислород, с помощью которого образуется оксидный, то есть окисленный целенаправленно, слой с заранее заданными свойствами, зависящими от силы тока и концентрации раствора кислоты. А так как эта деталь в системе «катод-электролит-деталь» является анодом, то и создание защитной плёнки назвали «анодированием». Или «оксидированием».
Варьируя силу тока и использование специальных добавок-присадок, можно добиться практически любой окраски анодированного покрытия.
Что дает анодирование
Чем-то анодирование похоже на гальванические процессы, возникающие во время хромирования или оцинковки стали. Но есть существенная разница: исключено использование посторонних веществ, пусть даже похожих по свойствам и химическому составу. Оксидирование ведётся на основе самого металла, подвергаемого электрохимическому воздействию.
При анодировании процесс поддаётся регуляции, оксидному слою придаются заранее заданные свойства, а результатом служит прочность оксидируемого участка.
Лучше всего защитный слой в результате анодирования образуется на таких металлах, как алюминий, титан, сталь, тантал. Главное же требование к технологии, чтобы металл имел только один оксид с высокими адгезивными свойствами.
Но для обеспечения адгезии нужна пористая структура, которая обеспечит соприкосновение рабочей смеси с чистым металлом поверхности, что значительно ускоряет процесс оксидирования.
Получается, что при электрохимическом процессе могут образовываться два типа оксидных защитных покрытий, отличающиеся как назначением, так и строением.
- Первый тип – пористая поверхность оксидной плёнки. Получается при воздействии на металл кислых электролитов. Структурированная порами поверхность служит отличной основой для того, чтобы на неё легли лакокрасочные материалы, которые своей структурой, образующейся в процессе полимеризации основы, закрепляется во фракталах пор. То есть анодированная поверхность способствует повышенной адгезии.
- Барьерная. Относится ко второму типу. Это самостоятельное защитное покрытие, которое защищает металл от контактов с внешней агрессивной средой.
Впрочем, созданием защитных слоёв процесс анодирования не ограничивается. Применяя разные материалы и меняя уровень напряжения, можно получить разные оттенки анодированной плёнки. Чем активно пользуются дизайнеры при оформлении интерьеров, когда облицовочным материалом служит алюминий.
Устройства, оборудование, реактивы
В промышленных масштабах анодирование делается в растворах серной кислоты разной концентрации. Они обеспечивают как большую скорость процесса, так и заданную глубину оксидной плёнки. Применение автоматики позволило полностью автоматизировать этот достаточно вредный для здоровья процесс.
Оборудование для анодирования бывает трех типов:
- Базовое, или основное. Тут всё просто: ванна с электролитом из инертного, не вступающего в реакцию, материала, притом обладающего свойствами теплоизолятора для предотвращения перегрева электролита. И катод, материал которого находится в прямой зависимости от того материала, который нужно анодировать.
- Обслуживающее оборудование. К нему относятся агрегаты, обеспечивающие работоспособность установки для оксидирования. Это узлы подачи напряжения, предохранительные и приводные механизмы.
- Вспомогательное. Это оборудование для работ по обработке и подготовке изделий к анодированию. В него входят и средства доставки деталей к ваннам. И средства упаковки и перемещения к местам, где готовые изделия складируются.
Самыми трудными, экологически опасными операциями при обработке металлов анодированием являются процессы загрузки и выгрузки деталей в ванны. Поэтому на качество работы приводных механизмов для этого всегда обращается особое внимание.
Исторически сложилось так, что все производственные процессы связаны с потреблением переменного тока – который совершенно не годится для процессов анодирования. Для того, чтобы ток был постоянным (то есть текущий в проводниках только в одном направлении, применяют выпрямители с достаточным запасом мощности. Оптимальная мощность для промышленных выпрямителей, связанных с процессами оксидирования – 2,5 киловатта. А для обеспечения получения анодированной плёнки разных цветов и оттенков для таких выпрямителей монтируют бесступенчатую систему подачи мощности.
Способы анодирования
Образование на металлах оксидной плёнки зависит от выбранной технологии со всеми её факторами вроде типа электролита, мощности подаваемого тока, поверхности детали-анода. Универсальность раз и навсегда отработанных методов позволяет проделывать процесс анодирования даже в домашних условиях – нужно только владеть технологиями, от которых будет зависеть цвет получаемой оксидной плёнки. Минимизировать вред для здоровья от испарений кислот вряд ли получится, вряд ли в условиях домашней мастерской можно обеспечить герметичность ванны, эффективную систему вытяжки и фильтрации воздуха..
Среди разных видов анодирования популярен процесс нанесения цветной оксидной плёнки. Популярность его связывается не только с декоративностью получаемого покрытия, но и с разной степенью его прочности, которая зависит от цвета.
Теперь о методах, вынесенных в заголовок материала, а именно:
- Тёплый метод
- Холодный метод
- Твёрдое анодирование.
Тёплый метод
В большинстве случаев используется как промежуточный, ибо получаемые на его основе оксидные плёнки не стойки к воздействиям.
Холодный метод
При холодном методе скорость образования анодированной плёнки выше скорости растворения металла на катоде, что обеспечивает высокую прочность получаемого защитного слоя. Но обязательно требование поддержания температуры раствора электролита на уровне не выше 5⁰С, что и дало название методу. Так как температура раствора в ванне в её середине всегда выше, чем у бортов, необходимо обеспечить циркуляцию раствора.
Твёрдое анодирование
Самая лучшая для высокого качества покрытия на стали. Такой способ анодирования применяют в аэрокосмической промышленности, где часто требуются запредельные нагрузки на узлы и агрегаты. Особенность метода — применение сложных по составу электролитов, а рецептура таких составов защищена патентами с международной регистрацией.
Преимущества анодированных поверхностей
- Выдающиеся антикоррозийные свойства. Оксидная плёнка надёжно защищает от обычной влаги и от большинства агрессивных сред.
- Прочность оксидной плёнки. Оксиды по своим прочностным физическим характеристикам в большинстве случаев прочнее металла, на котором они образованы.
- Непроводимость тока. Парадоксальным образом образованная на металле и из металла оксидная плёнка практически является диэлектриком – что находит своё применение в создании электролитических (оксидных) конденсаторов.
- Экологический аспект: при производстве посуды нанесённая на неё оксидная плёнка не даёт ионам металла переходить в пищу, не даёт ей подгорать, стенки и дно посуды приобретают устойчивость к большим перепадам температуры.
- Широкое использование анодированных поверхностей металла в дизайне. Применение в растворах электролита некоторых солей позволяет получать глубокие и насыщенные оттенки.
Анодирование разных металлов
Нержавеющая сталь
Самый трудный для анодирования объект из-за своей химической инертности. Чтобы получить на ней оксидированную поверхность, нержавейку предварительно подвергают процедуре никелирования. Хотя сейчас ведется активная разработка специальных диффузионных паст, на которых оксид будет образовываться без никелевой «подушки».
Оксидированию поддаётся плохо, а там, где это требуется, применяют дорогие соли в качестве присадок к электролитам или используют не экологичные фосфатные или оксалатные растворы. На практике этот процесс применяют крайне редко.
Титан
Металлические изделия из титана проходят обязательную процедуру оксидирования, из-за того, что нанесение оксидной плёнки на 15-28% увеличивает износостойкость верхнего слоя изделий из титана. А также дополнительно придаёт изделиям декоративность, кардинально меняя цвет. Титан очень нетребователен к составу кислот для электролитических реакций – подойдёт практически любая.
Серебро
Для создания оксидной плёнки на серебре, применяют серную печень – сплав порошкообразной серы с поташом при сильном нагревании без присутствия воды. Впрочем, такой метод нанесения оксидных плёнок применяют и для бронзы, где получаемая плёнка называется искусственной патиной. На серебре обработка таким реактивом способна дать синий и фиолетовый цвета. Но без изменения свойств серебра как металла.
Анодирование алюминия
Оксидирование этого металл даёт самые широкие возможности с широчайшей сферой применения. Есть много способов образования на поверхности этого металла оксидов, более половины из них связаны с получением цветных ярко окрашенных, поверхностей.
Заключение
Анодное оксидирование — универсальный метод защиты многих металлов, а также технологией, позволяющей приготовить металлы к прочной окраске, когда оксидные плёнки бывают пористыми. Анодирование также придает поверхностям дополнительные декоративные свойства. А доступность многих материалов и оборудования позволяет, при обеспечении минимальных мер безопасности, делать анодирование металлов в кустарных условиях.