Как определить химический состав стали
Elton-zoloto.ru

Драгоценные металлы

Как определить химический состав стали

Марки стали – таблица с маркировкой и расшифровкой

Любому специалисту, имеющему дело с металлом, знакомо понятие «марки стали». Расшифровка маркировки стальных сплавов дает возможность получить представление об их химическом составе и физических характеристиках. Разобраться в данной маркировке, несмотря на ее кажущуюся сложность, достаточно просто – важно только знать, по какому принципу она составляется.

Редкое производство обходится без стали, поэтому разбираться в его марках крайне важно

Обозначают сплав буквами и цифрами, по которым можно точно определить, какие химические элементы в нем содержатся и в каком количестве. Зная это, а также то, как каждый из таких элементов может влиять на готовый сплав, можно с высокой степенью вероятности определить, какие именно технические характеристики свойственны определенной марке стали.

Виды сталей и особенности их маркировки

Сталь представляет собой сплав железа с углеродом, при этом содержание последнего в ней составляет не более 2,14%. Углерод придает сплаву твердость, но при его избытке металл становится слишком хрупким.

Одним из важнейших параметров, по которому стали делят на различные классы, является химический состав. Среди сталей по данному критерию выделяют легированные и углеродистые, последние подразделяются на мало- (углерода до 0,25%), средне- (0,25–0,6%) и высокоуглеродистые (в них содержится больше 0,6% углерода).

Включая в состав стали легирующие элементы, ей можно придать требуемые характеристики. Именно таким образом, комбинируя вид и количественное содержание добавок, получают марки, обладающие улучшенными механическими свойствами, коррозионной устойчивостью, магнитными и электрическими характеристиками. Конечно, улучшать характеристики сталей можно и при помощи термообработки, но легирующие добавки позволяют делать это более эффективно.

По количественному составу легирующих элементов различают низко-, средне- и высоколегированные сплавы. В первых легирующих элементов не более 2,5%, в среднелегированных – 2,5–10%, в высоколегированных – более 10%.

Классификация сталей осуществляется и по их назначению. Так, выделяют инструментальные и конструкционные виды, марки, отличающиеся особыми физическими свойствами. Инструментальные виды используются для производства штамповых, мерительных, а также режущих инструментов, конструкционные – для выпуска продукции, применяемой в строительстве и сфере машиностроения. Из сплавов, отличающихся особыми физическими свойствами (также называемых прецизионными), изготавливают изделия, которые должны обладать особыми характеристиками (магнитными, прочностными и др.).

Классификация сталей по назначению

Стали противопоставляются друг другу и по особым химическим свойствам. К сплавам данной группы относятся нержавеющие, окалиностойкие, жаропрочные и др. Что характерно, нержавеющие стали могут быть коррозионностойкими и нержавеющими пищевыми – это разные категории.

Кроме полезных элементов, сталь включает и вредные примеси, к основным из которых относятся сера и фосфор. В ней также находятся газы в несвязанном состоянии (кислород и азот), что негативно отражается на ее характеристиках.

Если рассматривать основные вредные примеси, то фосфор увеличивает хрупкость сплава, особенно сильно проявляющуюся при низких температурах (так называемая хладноломкость), а сера вызывает появление трещин в металле, нагретом до высокой температуры (красноломкость). Фосфор, ко всему прочему, значительно уменьшает пластичность нагретого металла. По количественному содержанию этих двух элементов выделяют стали обыкновенного качества (не более 0,06–0,07% серы и фосфора), качественные (до 0,035%), высококачественные (до 0,025%) и особовысококачественные (сера – до 0,015%, фосфор – до 0,02%).

Маркировка сталей также указывает на то, в какой степени из их состава удален кислород. По уровню раскисления выделяют стали:

  • спокойного типа, обозначаемые буквосочетанием «СП»;
  • полуспокойные – «ПС»;
  • кипящие – «КП».

О чем говорит маркировка сталей

Расшифровать марку стали довольно просто, необходимо только владеть определенными сведениями. Конструкционные стали, обладающие обыкновенным качеством и не содержащие легирующих элементов, маркируют буквосочетанием «Ст». По цифре, идущей после букв в названии марки, можно определить, сколько в таком сплаве углерода (исчисляется в десятых долях процента). За цифрами могут идти буквы «КП»: по ним становится ясно, что данный сплав не до конца прошел процесс раскисления в печи, соответственно, он относится к категории кипящего. Если название марки не содержит таких букв, то сталь соответствует категории спокойной.

Химический состав углеродистых конструкционных сталей обыкновенного качества

Конструкционная нелегированная сталь, относящаяся к категории качественных, имеет в своем обозначении две цифры, по ним определяют среднее содержание в ней углерода (исчисляется в сотых долях процента).

Прежде чем приступить к рассмотрению марок тех сталей, которые включают легирующие добавки, следует разобраться в том, как данные добавки обозначаются. Маркировка легированных сталей может включать такие буквенные обозначения:

Список используемых легирующих добавок

Обозначение сталей с легирующими элементами

Как сказано выше, классификация сталей с легирующими элементами включает несколько категорий. Маркировка легированных сталей составляется по определенным правилам, знание которых позволяет достаточно просто определить категорию конкретного сплава и основную область его применения. В начальной части названий таких марок находятся цифры (две или одна), показывающие содержание углерода. Две цифры указывают на его среднее содержание в сплаве в сотых долях процента, а одна – в десятых. Есть и стали, не имеющие в начале названия марки цифр. Это означает, что углерод в этих сплавах содержится в пределах 1%.

Пример маркировки легированной стали

Буквы, которые можно увидеть за первыми цифрами названия марки, указывают на то, из чего состоит данный сплав. За буквами, дающими информацию о том или ином элементе в его составе, могут стоять или не стоять цифры. Если цифра есть, то по ней определяется (в целых процентах) среднее содержание указанного буквой элемента в составе сплава, а если цифры нет, значит, данный элемент содержится в пределах от 1 до 1,5%.

В конце маркировки отдельных видов сталей может стоять буква «А». Это говорит о том, что перед нами высококачественная сталь. К таким маркам могут относиться и углеродистые стали, и сплавы с легирующими добавками в своем составе. Согласно классификации, к данной категории сталей причисляются те, в которых сера и фосфор составляют не более 0,03%.

Примеры маркировки сталей различных видов

Определение марки стали и причисление сплава к определенному виду – это задача, которая не должна вызывать никаких проблем у специалиста. Не всегда под рукой есть таблица, в которой дается расшифровка названий марок, но разобраться с этим помогут примеры, которые приведены ниже.

Содержание элементов в распространенных марках стали (нажмите для увеличения)

Конструкционные стали, не содержащие легирующих элементов, обозначаются буквосочетанием «Ст». Цифры, стоящие следом, – это содержание углерода, исчисляемое в сотых долях процента. Несколько иначе маркируются низколегированные конструкционные стали. К примеру, в стали марки 09Г2С 0,09% углерода, а легирующие добавки (марганец, кремний и др.) содержатся в ней в пределах 2,5%. Очень похожие по своей маркировке 10ХСНД и 15ХСНД отличаются разным количеством углерода, а доля каждого легирующего элемента в них составляет не больше 1%. Именно поэтому после букв, обозначающих каждый легирующий элемент в таком сплаве, не стоит никаких цифр.

20Х, 30Х, 40Х и др. – так маркируются конструкционные легированные стали, преобладающим легирующим элементом в них является хром. Цифра в начале такой марки – это содержание углерода в рассматриваемом сплаве, исчисляемое в сотых долях процента. За буквенным обозначением каждого легирующего элемента может быть проставлена цифра, по которой и определяют его количественное содержание в сплаве. Если ее нет, то указанного элемента в стали содержится не больше 1,5%.

Можно рассмотреть пример обозначения хромокремнемарганцевой стали 30ХГСА. Она, согласно маркировке, состоит из углерода (0,3%), марганца, кремния, а также хрома. Каждого из данных элементов в ней содержится в границах 0,8–1,1%.

Как расшифровать маркировку сталей?

Чтобы расшифровка обозначения различных видов сталей не вызывала затруднений, следует хорошо знать, какими они бывают. Отдельные категории сталей имеют особенную маркировку. Их принято обозначать определенными буквами, что позволяет сразу понять и назначение рассматриваемого металла, и его ориентировочный состав. Рассмотрим некоторые из таких марок и разберемся в их обозначении.

Свойства и назначение конструкционных легированных сталей

Конструкционные стали, специально предназначенные для изготовления подшипников, можно узнать по букве «Ш», данная литера ставится в самом начале их маркировки. После нее в названии марки идет буквенное обозначение соответствующих легирующих добавок, а также цифры, по которым узнают количественное содержание этих добавок. Так, в сталях марок ШХ4 и ШХ15, кроме железа с углеродом, содержится хром в количестве 0,4 и 1,5%, соответственно.

Буквой «К», которая стоит после первых цифр в названии марки, сообщающих о количественном содержании углерода, обозначают конструкционные нелегированные стали, используемые для производства сосудов и паровых котлов, работающих под высоким давлением (20К, 22К и др.).

Качественные легированные стали, которые обладают улучшенными литейными свойствами, можно узнать по букве «Л», стоящей в самом конце маркировки (35ХМЛ, 40ХЛ и др.).

Некоторую сложность, если не знать особенностей маркировки, может вызвать расшифровка марок строительной стали. Сплавы данной категории обозначают буквой «С», которую ставят в самом начале. Цифры, следующие за ней, указывают на минимальный предел текучести. В таких марках также используются дополнительные буквенные обозначения:

  • литера Т – термоупрочненный прокат;
  • буква К – сталь, отличающаяся повышенной коррозионной устойчивостью;
  • литера Д – сплав, характеризующийся повышенным содержанием меди (С345Т, С390К и др.).

Нелегированные стали, относящиеся к категории инструментальных, обозначают буквой «У», она проставляется в начале их маркировки. Цифра, идущая за данной буквой, выражает количественное содержание углерода в рассматриваемом сплаве. Стали данной категории могут быть качественными и высококачественными (их можно определить по букве «А», она проставляется в конце названия марки). В их маркировке может содержаться буква «Г», что означает повышенное содержание марганца (У7, У8, У8А, У8ГА и др.).

Инструментальные стали, содержащие легирующие элементы в своем составе, маркируются аналогично с легированными конструкционными (ХВГ, 9ХВГ и др.).

Состав легированных инструментальных сталей (%)

Маркировка тех сталей, которые входят в категорию быстрорежущих, начинается с буквы «Р», за которой идут цифры, указывающие на количественное содержание вольфрама. В остальном марки таких сплавов называются по стандартному принципу: буквы, обозначающие элемент, и, соответственно, цифры, отражающие его количественное содержание. В обозначении таких сталей не указывается хром, так как его стандартное содержание в них составляет около 4%, а также углерод, количество которого пропорционально содержанию ванадия. Если количество ванадия превышает 2,5%, то его буквенное обозначение и количественное содержание проставляют в самом конце маркировки (З9, Р18, Р6М5Ф3 и др.).

Влияние некоторых добавок на свойства стали

По-особому маркируются нелегированные стали, относящиеся к категории электротехнических (их еще часто называют чистым техническим железом). Невысокое электрическое сопротивление таких металлов обеспечивается за счет того, что их состав характеризуется минимальным содержанием углерода – менее 0,04%. В обозначении марок таких сталей нет букв, только цифры: 10880, 20880 и др. Первая цифра указывает на классификацию по типу обработки: горячекатаная или кованная – 1, калиброванная – 2. Вторая цифра связана с категорией коэффициента старения: 0 – ненормируемый, 1 – нормируемый. Третья цифра указывает на группу, к которой данная сталь относится по нормируемой характеристике, принятой за основную. По четвертой и пятой цифрам определяется само значение нормируемой характеристики.

Принципы, по которым осуществляется обозначение стальных сплавов, были разработаны еще в советский период, но и по сей день успешно используются не только в России, но также в странах СНГ. Обладая сведениями о той или иной марке стали, можно не только определять ее химический состав, но и эффективно подбирать металлы с требуемыми характеристиками.

Разбираться в данном вопросе важно как специалистам, разрабатывающим и проектирующим различные конструкции из металла, так и тем, кто часто работает с различными сталями и занимается изготовлением из них деталей разного назначения.

Маркировка и применение различных марок стали

Марки стали отличаются составом металла и химическими компонентами. Именно ввод легирующих элементов даст итоговый продукт, а само производство и обработка будут указывать на отдельные свойства. Нужно учитывать, что отдельные компоненты делают характеристики хуже, поэтому на маркировке указывается их низкое содержание или вообще отсутствие.

Читать еще:  Магнитосъемник для одежды

Применяя расшифровку маркировки стали, производитель дает возможность потребителю узнать о содержании основных компонентов сплава, некоторые сведения о технологии изготовлении, технических характеристиках и возможностях применения.

Виды стали и маркировка

Для одних изделий нужна высокая износоустойчивость, для других стойкость к коррозии, а для третьих – магнитные свойства.

Но большая часть сплавов требуется для изготовления конструкционной стали, которая разделяется по видам и маркируется буквами:

  • «С» — для строительства. С низким содержанием легирующих компонентов, отличающаяся хорошей свариваемостью.
  • Для пружин (пружинная). В данных сплавах присутствуют отличные показатели упругости, сопротивляемости к разрушительным процессам, прочность на усталость. Для изготовления рессор, пружин.
  • «Ш» для подшипников. Из названия понятно, что данные сплавы нужны для изготовления элементов подшипников для различных узлов, механизмов. Главные свойства – износоустойчивость, отменная прочность, и малая текучесть.
  • Сталь стойкая коррозии или нержавейка. Данный вид отличает высокое содержание легирующих компонентов, повышенная стойкость к агрессивным средам и веществам.
  • Жаропрочные марки стали – сплавы, которые могут применяться в изделиях, способных функционировать под нагрузкой при высоких температурах. Сфера применения – элементы различных двигателей.
  • «У» для инструментов или инструментальная сталь нашла свое применение в изготовлении инструментов для измерений в металлообработке и для деревообрабатывающей промышленности.
  • «Р» быстрорежущая сталь востребована для производства инструментов в металлообрабатывающем оборудовании.
  • Цементирующая – сплав, применяемый для узлов и механизмов, которые функционируют при значительных поверхностных нагрузках.

Для остальных сталей (пружинная, инструментальная) не имеют обозначений. Указывается только химсостав.

Кроме видов сталь классифицируется по химсоставу, качеству, способу плавки, структуре, назначению.

Химический состав

Основные добавки для легирования – металлы. Вариативность количественного состава и массовой доли дает возможность получать различные марки. Просто железо по своим техническим свойствам – низкое качество конечного продукта: низкая прочность и высокая коррозийность требуют добавления компонентов, которые будут улучшать качество. Однако на практике доказано, что, повышая одно свойство, понижаются другие. Так высоколегированная нержавейка имеет низкие показатели механической прочности, а высококачественные углеродистые стали с получением прочности, получают коррозийность.

Главные компоненты химического состава стали – углерод и железо, причем углерода должно быть не больше 2,14%, железа не меньше 50%. Количество углерода в составе определяет ее классификацию: низкоуглеродистые, среднеуглеродистые, высокоуглеродистые.

Если процент содержания углерода достаточно высок, то сплав получается с высокой твердостью, но прочность снижается.

Чтобы добиться нужных эксплуатационных свойств, вводятся химические легирующие элементы, которые разделяют сталь на три класса:

  • с низким содержанием легирующих компонентов (до 2,5%);
  • среднелегированные – до 10%;
  • высоколегированные – до 50%.

Это указывается в маркировке числом процентного содержания для каждого элемента. Если нет числа, то это означает, что добавок меньше 1,5 %. Показатели углерода не отображаются, так как он присутствует во всех композициях. Содержание углерода стоит в начале маркировки. Такая же маркировка указывает на назначение сплава. Здесь также буквы, которые расположены в определенном порядке: начало, середина, конец.

Структура стали

Внутреннее строение называется структурой. Она может изменяться от термической обработки или механических нагрузок. Размеры зерен и их форма обуславливаются составом и легирующими добавками, а также технологией изготовления и изменениями температурных показателей (фазы). Фазы делятся на температурные диапазоны, которые могут меняться от легирующих компонентов. Есть несколько основных фаз строения металла.

  • Перлит, состоящий из феррита и карбида в равных долях. Он образуется в процессе медленного охлаждения (до +727 0 ) аустенита (сплав никеля).
  • Аустенит – фаза с температурным режимом до +1400 0 .
  • Мартенсит. Фаза с пересыщенным раствором углерода, характерная для закаленных сталей.
  • Феррит. Фаза состоит из твердорастворного углерода.
  • Бейнит – фаза, образующаяся при резком охлаждении аустенита до +500 0 .

Фазы указывают на строение металла, его физические качества и от которых зависит класс стального сплава: литейный, инструментальный и др.

Что такое раскисление

В процессе плавки в сплаве остается в небольшом количестве кислород. Чтобы снизить его содержание и восстановить железо применяют метод раскисления (реакция). Суть процесса заключается в добавлении соединений в расплавленное состояние металла. В процессе реакции освобожденный кислород начинает реагировать на углерод, появляется углекислый газ.

Итоговый сплав зависит от продолжительности реакции и раскислителей. По классификации это 3 вида стали:

  • Кипящая. В данной стали низкое качество, так как реакция короткая и выход готового продукта больше;
  • Спокойная. Обладает высоким качеством, но малый выход продукта, поэтому она дорогая.
  • Полуспокойная. Это средний вариант с оптимальными показателями качества и цены.

Разная степень раскисления маркируется буквенными обозначениями: «кп», «сп», «пс».

Как маркируются легирующие добавки

Состав стального сплава маркируется буквами кириллицей, и отвечают названиям химических элементов.

Химический элемент Буква
кобальт К
никель Н
вольфрам В
молибден М
титан Т
марганец Г
хром Х
медь Д
селен Е
ванадий Ф
ниобий Б
бор Р
цирконий Ц
азот А
алюминий Ю
кремний С

В таблице видно, что есть азот и кремний, которые не являются металлами. Не указан углерод, но он присутствует в любом виде стального сплава, поэтому при маркировке просто указывается его процентное содержание.

О цветной маркировке

Обозначение в цвете применяется только в прокатной стали. Это позволяет избежать ошибок при транспортировке и хранении. Для этого применяют точки или полосы. Назначение стального сплава маркируется «своим» цветом, но группа и раскисление не учитываются.

Желтый цвет применяется для конструкционных сталей: общего назначения, автоматные, цементированные, улучшенные.

Красный круг или полоса говорит о том, что данный вид относится к высокопрочному стальному сплаву: легированная, инструментальная, быстрорежущая, закаленная.

Синий цвет обозначает прокат из нержавейки: с серой, аустенитная, мартенситная.

Обозначением зеленого цвета маркируется сталь универсального применения: высокопрочный чугун, общего назначения, автоматные, цементированные, азотированные, улучшенные углеродистые.

Марки стали и их назначение

  1. Согласно маркировке конструкционная углеродистая сталь 08 кп и 10 применяется для изготовления штампованных деталей (холодная штамповка и высадка), прокладок, трубок, метизов, колпачков, а также для деталей, которые не нуждаются в высокой прочности: втулки, упоры, валики, копиры, фрикционы, колеса с зубцами.
    • 15, 20 для деталей с низкой нагрузкой, тонкие элементы, которые работают на истирание, крюки, рычаги, траверсы, болты, вкладыши.
    • 30, 35 – для деталей под низким напряжением: шпиндели, тяги, оси, звездочки, диски, рычаги.
    • 40, 45 – для элементов повышенной прочности: коленвалы, распределительные валы, зубчатые венцы, колеса, плунжеры, фрикционы, оси.
    • 50, 55 – используется для изготовления прокатных валков, штоков, зубчатых колес, эксцентрики, рессоры. Перед изготовлением деталей сталь подвергается закалке.
    • 60 – для производства прочных и упругих деталей: диски сцепления, пружинные кольца, прокатные валы.
  2. Тонколистная, низколегированная, универсальная сталь имеет маркировку: 09Г2, 09Г2С, 10 ХСНД, 15 ХСНД, 15 ГФ. Сферы применения: машиностроение, судостроение, химическое машиностроение, вагоностроение. Это сварные конструкции, паровые котлы, детали вагонов, сложные и фасонные профиля.
  3. Конструкционная легированная сталь маркируется: 15 Х, 15 ХФ, 18 ХГТ, 20 Х, 20 ХГР, 20 ХНЗА, 35 ХМ, 38 ХА, 40 Х, 40 ХС и другие применяются для изделий, которые функционируют на повышенных скоростях, для деталей узлов и механизмов, работающих под высокими нагрузками.
  4. Стали и сплавы, стойкие к коррозии в своей маркировке имеют буквы Х, Н, С, АГ, ТГР, МТ, АМ, ДИ, Ю, Т. Сфера применения химическое машиностроение, газопереработка, нефтехимическая промышленность, пищевое производство, легкая промышленность, машиностроение, судостроение, а также в других областях, где работа деталей и механизмов сопряжена с агрессивными рабочими средами.
  5. Инструментальная нелегированная сталь разных марок, маркируется: У, А, Г, и применяется в деревообрабатывающей промышленности, изготовления ручных инструментов, для ножей, штампов для кузницы, игольной проволоки, сердечников, а также инструмента с низкой износостойкостью: хирургический инструмент, бритвы, для гравировки.
  6. Пружинная сталь применяется для производства рессор, пружин, подвергающихся большим нагрузкам и ответственные элементы в рессорах.
  7. Сталь для подшипников (подшипниковая) востребована для изготовления подшипников и их элементов для работы станков, железнодорожного транспорта, авиадвигателей, в точном приборостроении, на прокатных станах.

Российские стандарты маркировки

Согласно российским стандартам, на стали обозначается маркировка, в которой указывается металлический состав и принадлежность к виду (частично). Если содержание углерода не превышает один процент, то его наличие в маркировке не участвует. В маркировку входят обозначения добавок, чтобы придать сплаву легирующие свойства. Они обозначаются десятыми и сотыми частями процента. Если какого-либо компонента менее полутора процентов, то его наличие отмечают только буквой.

Но не только химический состав присутствует в маркировке. Здесь есть символы, которые указывают на характеристики стального сплава для применения и уровень качества. Так буква «А» говорит о высоком качестве продукта.

Примерные расшифровки

Чтобы было понятно, как расшифровываются разные виды сталей, приведем несколько примеров, которые дают знания о маркировке.

  • Р6М5Ф2К8. Данная маркировка указывает, что это сталь быстрорежущая, в ней содержатся компоненты в процентном отношении: молибден 5, ванадий 2, кобальт 8. Такой элемент, как хром есть во всех сталях данного вида, поэтому его не вносят в маркировку. Также здесь есть вольфрам, но его количество может изменяться. В данной маркировке его 6 процентов.
  • У10ГА. Маркировка относится к инструментальному стальному сплаву, содержит 10 процентов углерода. Сталь качественная, имеет в своем составе марганец.
  • 20ХГСА расшифровывается: углерод – 0,2 % (цифра впереди аббревиатуры). Затем в состав входит хром – Х, марганец – буква Г, кремний с полуторапроцентным содержанием (С). Буква «А» в любом сплаве обозначает высокое качество.

Зная условные обозначения можно легко определить марку стали.

Используемая литература и источники:

  • Теоретические основы и технология восстановительной плавки металлов из неокускованного сырья / С.В. Дигонский. — М.: Наука, 2007.
  • Московский институт стали и сплавов. Фрагменты истории / В.А. Роменец. — М.: МИСИС, Руда и металлы, 2004.
  • Справочник теплоэнергетика предприятий цветной металлургии. — М.: Металлургия, 1982.
  • Статья на Википедии

Определение химического состава

Лекция 12

Общие сведения о контроле химического состава. Пробы для химического анализа. Отбор проб и подготовка к анализу. Косвенные методы: по искре, по излому. Химические методы: гравиметрический, титриметрический. Физико-химические методы: фотометрический, потенциометрический, кулонометрический, полярографический. Физические методы: эмиссионный спектральный, рентгеноспектральный, атомно-абсорбционный.

Химический состав сплавов регламентируется ГОСТами, поэтому отступление от заданного химического состава, как правило, является браковочным признаком. В ГОСТах и ТУ приводится полный химический состав сплава – содержание всех легирующих элементов и примесей. В ряде случаев ограничиваются контролем только основных легирующих элементов и наиболее опасных примесей каждой плавки.

Читать еще:  Магнитные уголки для сварки

Отбор пробдля анализа химического состава регламентируется нормативными документами. Наиболее распространенными являются два способа отбора проб: самостоятельная заливка специальных образцов-проб, не связанных с отливкой; получение образцов-проб на литниковых ходах или бобышках. Очень часто образцы-пробы, отлитые вместе с отливкой, не только служат для определения химического состава, но и являются заготовками для образцов на механические испытания. Иногда для более жесткого контроля одну из отливок партии разрезают и образцы-пробы высверливают из тела отливки для получения пробы в виде стружки.

При отборе на химический анализ пробы в виде стружки необходимо с поверхности литого образца удалить пригар. Отбор стружки осуществляется сверлением, обточкой или фрезерованием на малых скоростях резания без смазывания и охлаждения инструмента. Стружка должна быть толщиной не более 0,4 мм и не иметь цвета побежалости.

От каждого образца-пробы данной плавки (отливки) отбирают одинаковое количество материала, смешивают его для усреднения и квартованием выделяют пробу массой 20-100 г, которая используется для химического анализа. Аналогичным образом поступают, когда стружка снимается непосредственно с отливки; отбор проб обеспечивают от различных участков отливки, затем проводят их усреднение. При исследовании дефектных отливок, наоборот, место отбора пробы должно быть в дефектном участке.

Косвенные методы определения химического состава

Искровой анализ марки сталиоснован на определении цвета и формы искр пучка, возникающего при контакте стального образца с вращающимся абразивным кругом.

Достоверные результаты контроль по искре может обеспечить только при наличии эталонов (образцов с известным химическим составом), в условиях одинаковой освещенности, при использовании абразивных кругов одинаковой плотности из одного и того же материала. Такой метод контроля может быть использован для качественного определения состава стали при разбраковке отходов: высечки, прутков, скрапа и т.д.

По количеству искр можно судить о приблизительном содержании связанного углерода в металле. При определенном навыке можно различать стали при содержанию углерода с точностью до 0,1 %. Наличие в составе сплава некоторых легирующих элементов вызывает изменение цвета пучка искр.

Характер пучка искр для различных сталей

Наименование стали Характеристика пучка искр
Нелегированная сталь менее 0,15 % C Короткий темный пучок искр, принимающих форму полосок и становящихся более светлыми в зоне сгорания; мало звездообразных разветвлений
Нелегированная сталь, 0,15–1,0 % С При повышении содержания углерода образуется более плотный и более светлый пучок искр с многочисленными звездочками и ответвлениями лучей
Нелегированная сталь, >1% С Очень плотный пучок искр с многочисленными звездочками. При увеличении содержания углерода уменьшается яркость и укорачивается пучок искр
Нелегированная сталь с повышенным содержанием марганца Широкий плотный ярко-желтый пучок искр, внешняя зона линий искр особенно яркая. Многочисленные разветвления лучей
Марганцовистая сталь (12 % Мn) Преобладание зонтообразных искр
Конструкционная сталь (до 5 % Ni) Яркие линии искр в виде язычков, расщепленные на ковке, увеличение яркости в зоне сгорания. При повышении содержания углерода на концах искр появляются звездочки
Никелевая сталь (высоколегированная) При содержании 35 % Ni красно-желтое окрашивание пучка. При более высоком содержании никеля (около 47 %) яркость искр значительно ослабевает
Хромистая сталь При низком содержании углерода и хрома линии искр более тонкие и более темные, чем в углеродистой стали
Хромистая сталь с низким содержанием углерода и высоким содержанием хрома Короткий темно-красный пучок искр без звездочек, слаборазветвленный, искры прилипает к поверхности шлифовального круга
Хромоникелевая сталь (конструкционная) Желто-красные искры с более яркими подосками в зоне сгорания. При повышенном содержании хрома и никеля пучок искр более темный
Хромоникелевая сталь высоколегированная (аустенитная) Темный широкий пучок, концы искр копьеобразные
Вольфрамовая сталь Красные короткие искры, линии искр отчетливо загибаются книзу. Разветвление звездочек углерода отсутствуют. Чем выше содержание вольфрама, тем слабее образование искр
Молибденовая сталь Ярко-желтые искры в виде язычков. При низком содержании молибдена язычки видны перед звездочками углерода, при повышенном содержании – за звездочками углерода

Метод проверки состава по излому нашел наибольшее распространение при плавочном контроле, главным образом, для оценки структуры металла по виду излома на специальных образцах, прилитых к отливкам образцах или разрывных образцах после механических испытаний. По излому определяется столбчатое строение (отливки из аустенитной стали Г13Л и др.), включения хрупкой составлявшей, пористость и т.д. Достаточно опытный контролер по виду излома может судить с достаточно удовлетворительной точностью и о химическом составе сплава. Например, чем меньше углерода в стали, тем более волокнистый вид излома. Указанием на количество содержащегося в стали углерода может служить также величина зерна.

На ряде заводов имеются шкалы изломов, в сравнении с которыми можно более точно составить представление о химическом составе сплава.

Гравиметрический метод основан на переводе анализируемой пробы в раствор и осаждении определяемого элемента в виде труднорастворимого соединения. Для количественного определения содержания элемента образовавшийся осадок отделяют фильтрованием, тщательно промывают, высушивают, прокаливают и взвешивают на аналитических весах с точностью до четвертого знака после запятой. По массе осадка рассчитывают содержание в нем определяемого элемента в процентах от взятой для анализа навески. Гравиметрический метод является наиболее точным и распространенным. Основной недостаток этого метода – большая длительность анализа (несколько часов).

Титриметрический метод основан на измерении объема раствора известной концентрации, расходуемого на реакцию с определенным элементом или его соединением. В анализируемый раствор с помощью измерительной бюретки понемногу вливают титрованный раствор с точно известной концентрацией. В момент наступления эквивалентности растворов индикаторное вещество (лакмус, фенолфталеин и т.п.) резко изменяет окраску. По затраченному объему титрованного раствора и его концентрации определяют содержание анализируемого элемента.

Высокая степень точности химического анализа используется при аттестации государственных стандартных образцов и стандартных образцов предприятий, по которым градуируют современные приборы для физико-механических методов, а также при проведении научно-исследовательских работ.

Проба переводится в раствор, после чего осуществляется собственно химический анализ, основанный на связи физико-химических свойств полученного раствора с его концентрацией.

В основе фотометрических методов лежит визуальное определение или определение с помощью светочувствительных фотоэлементов интенсивности окраски раствора, которая обусловлена концентрацией определяемого компонента в растворенной стружковой пробе. О количественном содержании элемента судят по оптической плотности, которая прямо пропорциональна концентрации вещества врастворе.

В основе потенциометрических методовлежит титриметрический метод, но в качестве индикатора служит погружаемый в анализируемый раствор электрод, потенциал на котором непрерывно измеряется в процессе титрования. В момент наступления эквивалентности растворов (момент окончания химической реакции) напряжение на индикаторном электроде резко изменяется, что регистрируется самопишущим прибором.

Кулонометрический методоснован на измерении количества электричества, израсходованного в ходе электрохимической реакции определяемого вещества с титруемым раствором и предназначен для определения содержания углерода и серы в чугунах и сталях. Например, при контроле содержания углерода количество электричества, затраченного на титрование, однозначно связано с количеством поглощенного раствором углекислого газа и соответственно с количеством углерода в анализируемой пробе металла. На индикаторной панели кулонометра высвечивается цифровое значение содержания углерода в металлической навеске.

Продолжительность анализа составляет 60-120 с в зависимости от содержания определяемого элемента.

Полярографический методоснован на зависимости предельной силы тока, определяемой по поляризационным кривым в процессе электролиза, от концентраций элемента в растворе. Поляризационные кривые в координатах “сила тока – напряжение в электрической ячейке” записываются в автоматическом режиме с помощью полярографов. Процессом поляризации называют изменение равновесного потенциала электрода при прохождении через него постоянного тока. Количественное определение элемента основано на оценке величины потенциала, соответствующего половине значений установившейся предельной силы тока.

Основан на выделении энергии атомами анализируемых элементов при воздействии на них различных источников возбуждения. Выделение энергии обусловлено переходом электронов атома из одного устойчивого состояния в другое. При этом энергия выделяется в виде квантов света:

где DЕ – энергия перехода электрона из одного устойчивого состояния в другое; h=6,623´10 –34 – постоянная Планка; с – скорость света; l – длина волны излучения.

Излучение с какой-либо длиной волны, соответствующее определенной энергии перехода, называется спектральной линией. Атомы каждого элемента излучают характерную только для него систему спектральных линий. Определение химического состава по спектральным линиям называется спектральным анализом. Он может быть качественным и количественным. В первом случае по появлению в спектре излучения определенных линий, характерных для каждого элемента, делают вывод о присутствии его в исследуемом сплаве. При количественном спектральном анализе измеряется интенсивность спектральных линий, которая зависит от концентрации.

Среди методов спектрального анализа наибольшее распространение получили оптический, эмиссионный, рентгеноспектральный, флюоресцентный и атомно-абсорбционный методы.

Марки стали

Химический состав марок стали

Все стали имеют свою маркировку, отражающую в первую очередь их химический состав. В маркировке стали первой цифрой указано содержание углерода в сотых долях процента. Затем следуют буквы русского алфавита, обозначающие наличие легирующего элемента. Если за буквой цифры нет, это означает, что содержание легирующего элемента составляет не более одного процента, а следующие за буквой цифры (цифра) означают содержание его в процентах.

Примеры расшифровки обозначения сталей:

12ХНЗА: содержание углерода – 0,12%, хрома – 1,0%, никеля – 3,0%, высокого качества;
30ХГСА: содержание углерода – 0,30%, хрома, марганца, кремния по одному проценту, буква “А” обозначает высокое качество;
19ХГН: cодержание углерода – 0,19%, хрома, марганца, никеля по одному проценту;
15Х25Т: содержание углерода – 0,15%, хрома – до 25%, титана – до 1%;
08Х21Н6М2Т: содержание углерода – 0,08%, хрома – 21%, никеля – 6%, молибдена – 2%, титана – до 1 процента.
09Х16Н15М3Б: содержание углерода – 0,09%, хрома – 16%, никеля – 15%, молибдена – 3,0%, ниобия – до 1 процента.

В последние годы для улучшения качества стали применяются новые методы ее выплавки, которые находят отражение в обозначениях марок стали:

  • ВД – вакуумно-дуговой;
  • ВИ – вакуумно-индукционный;
  • Ш – шлаковый;
  • ПВ – прямого восстановления;
  • ЭШП – электронношлаковый переплав;
  • ШД – вакуумно-дуговой после шлакового переплава;
  • ЭЛП – электронно-лучевой переплав;
  • ПДП – плазменно-дуговой переплав;
  • ИШ – вакуумно-индукционный плюс электрошлаковый переплав;
  • ИП – вакуумно-индукционный плюс плазменно-дуговой переплав.

Кроме перечисленных, на заводах изготовляются трубы из опытных марок стали, имеющие следующие обозначения:

  • ЭП – электростальская (завод) поисковая;
  • ЭИ – электростальская исследовательская;
  • ЧС – челябинская сталь;
  • ЗИ – златоустовская исследовательская;
  • ВНС – ВИЭМовская нержавеющая сталь;
  • ДИ – днепроспецстальская (завод) исследовательская.

По степени раскисления стали маркируются так:
кипящие – кп, полуспокойные – пс, спокойные – сп.

Углеродистые стали

Углеродистая сталь по назначению делится на конструкционную и инструментальную.

Конструкционной углеродистой называется сталь, содержащая до 0,6 % углерода (как исключение допускается 0,85 процента).
По качеству конструкционная углеродистая сталь разделяется на две группы: обыкновенного качества и качественная.

Сталь обыкновенного качества применяется для неответственных строительных конструкций, крепежных деталей, листового проката, заклепок, сварных труб. На конструкционную углеродистую сталь обыкновенного качества установлен ГОСТ З80-88. Эта сталь выплавляется в кислородных конвертерах и мартеновских печах и подразделяется на три группы: группа А, поставляемая по механическим свойствам; группа Б, поставляемая по химическому составу и группа В, поставляемая по механическим свойствам и химическому составу.

Качественная углеродистая конструкционная сталь поставляется по химсоставу и механическим свойствам, выплавляется в кислородных конвертерах и мартеновских печах. На нее распространяется ГОСТ 1050-88.
Качественная конструкционная сталь применяется для деталей, работающих при повышенных нагрузках и требующих сопротивления удару и трению: зубчатых колес, осей, шпинделей, шарикоподшипников, шатунов, коленчатых валов, а также для изготовления сварных и бесшовных труб. К конструкционным углеродистым сталям относится автоматная. Для улучшения обработки резанием в ее состав вводится сера, свинец, селен. Из этой стали делают трубы для автомобилестроения.

Читать еще:  Что делают из бронзы

Легированные стали

В стали особого назначения вводят также редкоземельные элементы, в легированных сталях может одновременно находиться несколько легирующих элементов.
Область применения конструкционной легированной стали очень велика. Применение легированной стали экономит металл, повышает долговечность изделий.

По назначению легированные стали делятся на группы: конструкционная, инструментальная и сталь с особыми физическими и химическими свойствами.

Конструкционная легированная сталь согласно ГОСТ 4543-71 делится на три группы: качественная, высококачественная и особо высококачественная.

В легированной стали наряду с обычными примесями (сера, кремний, фосфор) имеются легирующие, т.е. связывающие элементы: хром, вольфрам, молибден, никель, а также кремний и марганец в повышенном количестве. Легированная сталь обладает высоко ценными свойствами, которых нет у углеродистой стали.

Ниже описано влияние конкретных элементов на свойства стали:

  • Хром – повышает твердость, коррозионностойкость;
  • Никель – повышает прочность, пластичность, коррозионностойкость;
  • Вольфрам – увеличивает твердость и красностойкость, т.е. способность сохранять при высоких температурах износостойкость;
  • Ванадий – повышает плотность, прочность, сопротивление удару, истиранию;
  • Кобальт – повышает жаропрочность, магнитопроницаемость;
  • Молибден – увеличивает красностойкость, прочность, коррозионностойкость при высоких температурах;
  • Марганец – при содержании свыше 1 процента увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок;
  • Титан – повышает прчность, сопротивление коррозии;
  • Алюминий – повышает окалиностойкость;
  • Ниобий – повышает кислотостойкость;
  • Медь – уменьшает коррозию.

Наибольшее распространение получили следующие легированные стали:

  • хромистые, обладающие хорошей твердостью, прочностью: 15Х, 15ХА, 20Х, 30Х, 30ХРА, 35Х, 40Х, 45Х;
  • марганцовистые, отличающиеся износоустойчивостью: 20Г, 50Г, 10Г2, 09Г2С;
  • хромомарганцовые: 19ХГН, 20ХГТ, 18ХГТ, 30ХГА, 25Х2ГНТА-ВД;
  • кремнистые и хромокремнистые, обладающие высокой твердостью и упругостью: 33ХС, 38ХС;
  • хромомолибденовые и хромомолибденованадиевые, особо прочные, противостоящие истиранию 30ХМА, 15ХМ, 15Х5М, 15Х1МФ;
  • хромомарганцевокремнистые стали (“хромансиль”) : 14ХГСА, 30ХГСА, 35ХГСА;
  • хромоникелевые, очень прочные и пластичные: 12Х2Н4А, 20ХН3А, 12ХН3А;
  • хромоникелевольфрамовые, хромоникелеванадиевые стали: 12Х2НВФА, 20Х2Н4ФА, 30ХН2ВА.

Стали и сплавы высоколегированные, коррозионостойкие, жаропрочные и жаростойкие

Коррозионностойкие высокохромистые стали, легированные никелем, титаном, хромом, ниобием и другими элементами. Предназначены для работы в средах разной агрессивности. Для слабо агрессивных сред используются стали 08Х13, 12Х13, 20Х13, 25Х13Н2.

Детали из этих сталей работают на открытом воздухе, в пресной воде, во влажном паре и растворах солей при комнатной температуре.

Для сред средней агрессивности применяют стали 07Х16Н6, 09Х16Н4Б, 08Х17Т, 08Х22Н6Т, 12Х21Н5Т, 15Х25Т.

Для сред повышенной агрессивности используют стали 08Х18Н10Т, 08Х18Н12Т, 03Х18Н12, которые обладают высокой стойкостью против межкристаллитной коррозии и жаростойкостью. Структура коррозионностойких сталей в зависимости от химсостава может быть мартенситной , мартенситно-ферритной, ферритной, аустенитно-мартенситной аустенитно-ферритной, аустенитной.

Хладостойкие стали должны сохранять свои свойства при температурах минус 40…минус 80 град. С. Наибольшее применение имеют стали: 20Х2Н4ВА, 12ХН3А, 15ХМ, 38Х2МЮА, 30ХГСН2А, 40ХН2МА и др.

Жаропрочные стали способны противостоять механическим нагрузкам при высоких температурах (400…850 град. С). Стали 15Х11МФ, 13Х14Н3В2ФР, 09Х16Н15М3Б и другие применяют для изготовления пароперегревательных устройств, лопаток паровых турбин, трубопроводов высокого давления. Для изделий, работающих при более высоких температурах, используются стали 15Х5М, 16Х11Н2В2МФ, 12Х18Н12Т, 37Х12Н8Г8МБФ и др.

Жаростойкие стали способны сопротивляться окислению и окалинообразованию при температурах 1150…1250 град. С. Для изготовления паровых котлов, теплообменников, термических печей, аппаратуры, работающей при высоких температурах в агрессивных средах используются стали марок 12Х13, 08Х18Н10Т, 15Х25Т, 10Х23Н18, 08Х20Н14C2, 1Х12МВСФБР, 06Х16Н15М2Г2ТФР-ИД, 12Х12М1БФР-Ш.

Теплоустойчивые стали предназначены для изготовления деталей, работающих в нагруженном состоянии при температуре 600 град. С в течение длительного времени. К ним относятся: 12Х1МФ, 20Х3МВФ, 15Х5ВФ, 12Х2МФСР.

Как определить химический состав стали

Мы успешно работаем на рынке экологических услуг несколько десятков лет. Сегодня наш институт — это многофункциональный испытательный комплекс лабораторий и отделов, имеющих всё необходимое для выполнения работ.

Финансово‐промышленная группа РОССТРОАренда недвижимости в Санкт‐Петербурге и Ленинградской области

Строительная система ROSSTRO‐VELOXНесъёмная опалубка из щепоцементных плит

Научно‐исследовательский институт ЛЕННИИПРОЕКТПроектный институт по жилищно‐гражданскому строительству

Торговый комплекс НОРД в КингисеппеСовременный торговый комплекс в центре города Кингисепп

Испытательный комплекс ПКТИМногофункцинальный испытательный комплекс

Услуги по проведению химического анализа:

  • Определение химического состава металлов и сплавов
  • Подбор марки стали
  • Подтверждение марки стали
  • Проверка на соответствие сертификату
  • Входной контроль металлов и сплавов
  • Участие в сертификации в качестве независимой лаборатории
  • Проведение исследований для судебных экспертиз

Выполняем анализ металлов и сплавов:

СТАЛЬ:

  • углеродистая, легированная (в т.ч. некоторые инструментальные)
  • нержавеющая коррозионно‐стойкая, жаростойкая и жаропрочная

АЛЮМИНИЕВЫЕ СПЛАВЫ:

  • система алюминий‐медь‐магний
  • система алюминий‐медь‐марганец
  • система алюминий‐марганец
  • система алюминий‐магний
  • система алюминий‐магний‐кремний
  • медно‐цинковые (латунь)
  • бронзы оловянные марок типа БрО

Метод испытаний

Атомно-эмиссионный спектральный анализ

СУЩНОСТЬ МЕТОДА АТОМНО-ЭМИССИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА

Метод основан на возбуждении атомов элементов материала анализируемого образца электрическим разрядом, разложении излучения в спектр, измерении аналитических сигналов и определении массовых долей элементов с помощью градуировочной характеристики, устанавливающей функциональную зависимость аналитического сигнала от содержания элемента.

Преимущества метода:

  • Многокомпонентность – возможность одновременного определения 10-ти и более элементов, в то время как при химическом анализе доступно только раздельное определение каждого элемента, для чего требуется проведение отдельных специфических реакций.
  • Низкие пределы обнаружения – возможность определения даже малых концентраций элементов и примесей (включая углерод, серу, фосфор и др.).
  • Экспрессность – в абсолютном большинстве случаев при спектральном анализе затраты времени несравнимо меньше, чем при других методах анализа.
  • Более низкая стоимость – за счет возможности одновременного определения множества элементов, в отличие от химического анализа, при котором приходится определять каждый элемент отдельно.

Оборудование:

Спектрометр эмиссионный ″Искролайн‐100″. Позволяет быстро и точно проводить анализ сталей и сплавов с возможностью определения большинства известных легирующих элементов и примесей, включая серу, фосфор и углерод. Внесен в Государственный реестр средств измерений России. Имеет действующее свидетельство о поверке.

Требования к образцам:

Образец должен быть монолитным.

  • для стержней — диаметр от 6мм (для малых диаметров до 16мм — длина отрезка не менее 50мм)
  • для труб — диаметр от 10мм и длина отрезка не менее 40мм
  • для остальных видов изделий — площадь поверхности не менее 20х40мм

Для проведения анализа необходимо предоставить:

  • Заявку — скачать бланк заявки (.docx)
  • Образцы
  • Акт отбора образцов — скачать бланк Акта отбора образцов (.docx)
  • Копии сертификатов (при наличии)

Обработка результатов и выдача протокола:

  • результаты измерений — процентное содержание массовых долей элементов в образце
  • марка материала согласно действующего на территории РФ ГОСТа
  • вывод о соответствии (несоответствии) образца предоставленным документам

Сроки выполнения работ:

ВАЖНО! Спектральный анализ относится к разрушающим видам испытаний. Поэтому образцы будут механически повреждены (изменятся их первоначальные форма и размеры), а следовательно к дальнейшей эксплуатации могут быть не пригодны.

По всем вопросам обращайтесь:

e-mail: PKTI-SPb@yandex.ru +7 (812) 388-00-01

Салапин Михаил Владимирович

Получить консультацию специалиста

Ваши контактные данные:

Вопрос-Ответ

Имеет ли лаборатория аккредитацию на проведение данного вида работ?

Испытательная лаборатория имеет разрешающие документы на оказание услуг неразрушающего контроля, а также разрушающих и других видов испытаний, включая проведение химического анализа.

С имеющейся аккредитацией лаборатории можно ознакомиться здесь

Проводит ли Ваша лаборатория сертификацию продукции?

Сертификационным центром наша лаборатория не является.

Однако, может выступать в качестве независимой лаборатории по проведению контроля (испытаний) с выдачей протоколов для дальнейшей сертификации.

Возможно в Вашей лаборатории провести анализ стружки, тонкой проволоки и т.п.?

Прибор рассчитан на исследование только монолитных образцов.
Более подробно о требованиях к образцам можно ознакомиться в разделе “Требования к образцам”

Возможно ли у Вас определить химический состав покрытия?

Возможно определить только толщину гальванических, лакокрасочных и огнезащитных покрытий . Ознакомиться можно здесь

Ваша лаборатория проводит химический анализ титановых и никелевых сплавов?

В настоящее время анализ сплавов на основе титана и никеля не проводится.

Имеется возможность определить химический состав сталей и сплавов указанных в разделе ” Выполняем анализ металлов и сплавов”

Возможно ли в Вашей лаборатории определить марки чугуна?

В настоящее время анализ чугуна не проводится.

Наша лаборатория проводит химический анализ металлов и цветных сплавов указанных в разделе “Выполняем анализ металлов и сплавов”

Какого размера должен быть образец?

Обра зец должен перекрывать отверстие камеры обыскривания (для обеспечения герметичности камеры), поэтому минимальный размер должен быть не менее 20мм (например, со спичечный коробок или 5-рублёвую монету).

Более подробно о требованиях к образцам можно ознакомиться в разделе “Требования к образцам”

Какими документами регламентируется отбор образцов?

Отбор образцов для химического анализа осуществляются в соответствии с:
ГОСТ 7565-81 «Чугун, стали и сплавы. Метод отбора проб для химического анализа»

ГОСТ 24231-80 «Цветные металлы и сплавы. Общие требования к отбору и подготовке проб для химического анализа»

а также нормативными документами на конкретную продукцию.

ГОСТ 31814-2012 «Оценка соответствия. Общие правила отбора образцов для испытаний продукции при подтверждении соответствия» (рекомендуемую форму акта отбора образцов заявителем см. Приложение Г данного ГОСТа или можно скачать здесь)

Каков порядок выполнения работ?

  1. Заказчик оформляет заявку. (Бланк заявки можно скачать здесь)
  2. Скан Заявки следует отправить на e – mail : pkti-spb@yandex.ru
  3. Исполнитель (Испытательная лаборатория) на основании заявки выставляет счёт (по желанию Заказчика оформляется и Договор).
  4. Заказчик оплачивает счёт и доставляет образцы в Испытательную лабораторию.
  5. Испытательная лаборатория принимает образцы и приступает к выполнению анализа.
  6. По результатам исследований оформляется Протокол. Скан готового протокола отправляется на e-mail Заказчика.
  7. Заказчик получает оригинал протокола и пакет бухгалтерских документов, а также испытанные образцы.

Адрес Испытательной лаборатории: г. Санкт-Петербург, ул. Рощинская, д.46, лит. А.

Сроки выполнения работ?

В зависимости от загруженности специалистов и объема работ исследование проводится в течение 1…3 рабочих дней.

Как правильно оформить заявку на проведение химического анализа?

Заявку можно оформить в свободной форме, в которой необходимо указать следующую информацию:

  1. Банковские реквизиты и ФИО руководителя предприятия (или предоставить карту организации).
  2. Наименование образцов, их размер.
  3. Содержание исследования: 1. определить только химический состав; 2. подобрать марку материала на основе полученных результатов анализа; 3. проверить соответствие марке, указанной в сертификате или указать свой вариант.
  4. Контактное лицо (с указанием ФИО, номера телефона, адреса электронной почты).
  5. Подпись представителя организации.

или же заполнить бланк заявки (скачать)

В каком виде будут представлены результаты проведенного химического анализа?

Результаты оформляются в виде протоколов с указанием химического состава и выводов по итогам исследований.

Возможен выезд Вашей лаборатории на объект для проведения химического анализа?

Химический анализ образцов проводится только на территории испытательной лаборатории по адресу:

г. Санкт-Петербург, ул. Рощинская, д.46, лит. А.

Санкт‐Петербург, ул. Афонская, д.2
Пн‐пт с 9:00 до 18:00

Если у вас есть вопросы позвоните нам по телефону +7 (812) 302-03-20 или отправьте электронное письмо.

© Финансово‐промышленная группа РОССТРО, 2017 — 2020

Ссылка на основную публикацию
Adblock
detector