- Как получается магнит
- 3 разных типа магнитов и их применение
- 1. Постоянные магниты
- I) Ферритовые магниты
- II) магниты Алнико
- III) Редкоземельные магниты
- IV) одномолекулярные магниты
- 2. Временные магниты
- 3. Электромагнит
- Как делают магниты
- Из чего делают магниты?
- Как делают магниты разными способами
- Изготовление электромагнитов
- Выплавка
- Измельчение
- Прессование
- Спекание
- Завершение производства
- Видео
- Что такое магнит? Виды и свойства магнитов.
- Определение
- Виды магнитов
- Типы постоянных магнитов
- Использование неодимовых магнитов
- Применение ферритовых магнитов
- Магнитотерапия
- Постоянные магниты
- Природа магнетизма
- Как увидеть магнитное поле
- Виды магнитов
- Естественные
- Искусственные
- Применение постоянных магнитов
- Экология
- Гальваника
- Медицина
- Транспорт
- Компьютерные технологии
- Бытовые приспособления
- Электротехника
- Радиотехника
- Генераторы
- Электродвигатели
- Видео
- Что такое магнит?
- Магнит в прошлом
- За магнит взялись всерьез
- Основные величины, связанные с магнитами в технике
- Что происходит внутри магнита?
- Где применяются магниты?
Как получается магнит
3 разных типа магнитов и их применение
Магниты — это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это невидимое поле, известное как магнитное поле, отвечает за ключевые свойства магнита.
Древние люди использовали магниты по крайней мере с 500 г. до н.э., и самые ранние известные описания таких материалов и их характеристики происходят из Китая, Индии и Греции около 25 веков назад. Однако искусственные магниты были созданы еще в 1980-х годах.
Очевидно, что не все магниты состоят из одних и тех же веществ, и поэтому их можно разделить на разные классы в зависимости от их состава и источника магнетизма. Ниже приведен подробный список трех основных типов магнитов с указанием их свойств, прочности, а также промышленного и непромышленного применения.
1. Постоянные магниты
После намагничивания постоянные магниты могут сохранять магнетизм в течение продолжительного времени. Они сделаны из материалов, которые могут намагничиваться и создают собственное постоянное магнитное поле.
Обычно постоянные магниты изготавливаются из четырех различных типов материалов:
I) Ферритовые магниты
Ферритовые магниты (также называемые керамическими магнитами) являются электроизоляционными. Они темно-серого цвета и выглядят как карандашный грифель.
Ферриты обычно представляют собой ферромагнитные керамические соединения, получаемые путем смешивания больших количеств оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель. Некоторые ферриты имеют кристаллическую структуру, например ферриты стронция и бария.
Они довольно популярны благодаря своей природе: они не подвержены коррозии и, следовательно, используются для продления жизненного цикла многих продуктов. Ферритовые магниты могут использоваться в чрезвычайно жарких условиях (до 300 градусов Цельсия), и стоимость изготовления таких магнитов также низкая, особенно если они производятся в больших объемах.
Они могут быть далее подразделены на «твердые», «полужесткие» или «мягкие» ферриты, в зависимости от их магнитных свойств.
Поскольку твердые ферриты трудно размагничивать, они обладают высокой коэрцитивной силой. Они используются для изготовления магнитов, например небольших электродвигателей и громкоговорителей. Мягкие ферриты, с другой стороны, имеют низкую коэрцитивную силу и используются для изготовления электронных индукторов, трансформаторов и различных микроволновых компонентов.
II) магниты Алнико
Магниты алнико состоят из алюминия (Al), никеля (Ni) и кобальта (Co), отсюда и название al-ni-co. Они часто включают титан и медь. В отличие от керамических магнитов, они являются электропроводящими и имеют высокие температуры плавления.
Чтобы классифицировать их (основываясь на их магнитных свойствах и химическом составе), Ассоциация производителей магнитных материалов присвоила им номера, такие как Alnico 3 или Alnico 7.
Алникос был самым сильным типом постоянных магнитов до развития редкоземельных магнитов в 1970-х годах. Известно, что они создают высокую напряженность магнитного поля на своих полюсах — до 0,15 Тесла, что в 3000 раз сильнее, чем магнитное поле Земли.
Сплавы Alnico могут сохранять свои магнитные свойства при высоких рабочих температурах, вплоть до 800 градусов Цельсия. Фактически, они являются единственными магнитами, которые имеют магнетизм при нагревании раскаленным докрасна.
Эти магниты широко используются в бытовых и промышленных применениях: несколько примеров — это магнетронные трубки, датчики, микрофоны, электродвигатели, громкоговорители, электронные трубки, радары.
III) Редкоземельные магниты
Как следует из названия, редкоземельные магниты изготавливаются из сплавов редкоземельных элементов. Это самый сильный тип постоянных магнитов, разработанный в 1970-х годах. Их магнитное поле может легко превышать 1 Тесла.
Два типа редкоземельных магнитов — самарий-кобальтовые и неодимовые магниты. Оба уязвимы для коррозии и очень хрупкие. Таким образом, они покрыты определенным слоем (слоями), чтобы защитить их от сколов или поломок.
Самарий-кобальтовые магниты состоят из празеодима, церия, гадолиния, железа, меди и циркония. Они могут сохранять свои магнитные свойства при высоких температурах и обладают высокой устойчивостью к окислению.
Из-за их меньшей напряженности магнитного поля и высокой стоимости производства они используются реже, чем другие редкоземельные магниты. В настоящее время они используются в настольном ядерно-магнитно-резонансном спектрометре, высококачественных электродвигателях, турбомашиностроении и во многих областях, где производительность должна соответствовать изменению температуры.
Неодимовые магниты, с другой стороны, являются наиболее доступным и сильным типом редкоземельных магнитов. Они представляют собой тетрагональную кристаллическую структуру, изготовленную из сплавов неодима, бора и железа.
Благодаря своим меньшим размерам и небольшому весу они заменили ферритовые и алникомагниты в многочисленных применениях в современных технологиях. Например, неодимовые магниты в настоящее время используются в головном приводе для компьютерных жестких дисков, электродвигателей для аккумуляторных инструментов, механических переключателей электронных сигарет и динамиков мобильных телефонов.
IV) одномолекулярные магниты
К концу 20-го века ученые узнали, что некоторые молекулы [которые состоят из ионов парамагнитного металла] могут проявлять магнитные свойства при очень низких температурах. Теоретически они способны хранить информацию на уровне магнитных доменов и обеспечивать гораздо более плотный носитель, чем традиционные магниты.
Одномолекулярные магниты состоят из кластеров марганца, никеля, железа, ванадия и кобальта. Было обнаружено, что некоторые цепные системы, такие как одноцепные магниты, сохраняют магнетизм в течение длительного периода времени при более высоких температурах.
Исследователи в настоящее время изучают монослои таких магнитов. Одним из ранних соединений, которое было исследовано в качестве одно-молекулярного магнита, является додекануклеарная марганцевая клетка.
Потенциальные возможности применения этих магнитов огромны. К ним относятся квантовые вычисления, хранение данных, обработка информации и биомедицинские приложения, такие как контрастные агенты МРТ.
2. Временные магниты
Некоторые объекты могут быть легко намагничены даже слабым магнитным полем. Однако, когда магнитное поле удалено, они теряют свой магнетизм.
Временные магниты различаются по составу: они могут быть любым объектом, который действует как постоянный магнит в присутствии магнитного поля. Например, магнитомягкий материал, такой как никель и железо, не будет притягивать скрепки после удаления внешнего магнитного поля.
Когда постоянный магнит подносится к группе стальных гвоздей, гвозди прикрепляются друг к другу, а затем к постоянному магниту. В этом случае каждый гвоздь становится временным магнитом, а когда постоянный магнит удаляется, они больше не прикрепляются друг к другу.
Временные магниты в основном используются для изготовления временных электромагнитов, сила которых может варьироваться в соответствии с требованиями. Они также используются для разделения материалов, сделанных из металла, на складах металлолома и дают новый импульс современной технологии — от высокоскоростных поездов до высокотехнологичного пространства.
3. Электромагнит
Электромагнит был изобретен британским ученым Уильямом Стердженом в 1824 году. Затем он был систематически усовершенствован и популяризирован американским ученым Джозефом Генри в начале 1830-х годов.
Электромагниты представляют собой плотно намотанные витки провода, которые функционируют как магниты при прохождении электрического тока. Его также можно классифицировать как временный магнит, поскольку магнитное поле исчезает, как только ток отключается.
Полярность и напряженность магнитного поля, создаваемого электромагнитом, можно регулировать, изменяя направление и величину тока, протекающего через провод. Это главное преимущество электромагнитов перед постоянными магнитами.
Для усиления магнитного поля катушка обычно наматывается на сердечник из «мягкого» ферромагнитного материала, такого как мягкая сталь. Провод, свернутый в одну или несколько петель, называется соленоидом.
Эти типы магнитов широко используются в электрических и электромеханических устройствах, включая жесткие диски, громкоговорители, жесткие диски, трансформаторы, электрические звонки, МРТ-машины, ускорители частиц и различные научные приборы.
Электромагниты также используются в промышленности для захвата и перемещения тяжелых предметов, таких как металлолом и сталь.
Как делают магниты
Главная » Наука и техника » Как делают магниты и какие их виды бывают | «Зачем и почему»
Приветствуем Вас, дорогие читатели, на нашем сайте!
Здесь вы сможете узнать множество интересных и зажигательных историй, множество фактов и объяснений в мире. На нашем сайте вы найдете много полезной и интересной информации из различных областей науки, спорта, природы, животных и многое многое другое.
Читайте и делитесь с друзьями!
В данной статье мы с Вами узнаем – КАК ДЕЛАЮТ МАГНИТЫ
Уникальные свойства некоторых веществ, всегда удивляли людей своею необычностью. Особое внимание привлекла способность некоторых металлов и камней – отталкиваться или притягиваться друг к другу. На протяжении всех эпох это вызвало интерес мудрецов и огромное удивление простых обывателей.
Начиная с 12 – 13 веков его начали активно применять в производстве компасов и других инновационных изобретений. Сегодня можно увидеть распространённость и разнообразие магнитов во всех сферах нашей жизни. Каждый раз, когда мы встречам очередное изделие из магнита, мы часто задаёмся вопросом: «Так как делают магниты?»
Из чего делают магниты?
Для производства постоянных и временных магнитов используют железо, неодим, бор, кобальт, самарий, альнико и ферриты.
Они в несколько этапов измельчаются и вместе плавятся, пекутся или спрессовываются до получения постоянного или временного магнитного поля. В зависимости от вида магнитов и требуемых характеристик, меняется состав и пропорции компонентов.
Как делают магниты разными способами
Прессованные магнитопласты – это магниты, полученные путем смешивания специального вида порошка NdFeB с полимерными связывающими материалами. Затем эта масса прессуется в форму и нагревается.
Магнитные изделия, получаемые таким способом, могут быть сложных форм, и обычно не требуют дополнительной обработки. Они имеют более низкую энергию продукта, чем спеченные магниты, до 10 МГсЭ.
Изотропные магнитопласты NdFeB могут быть намагничены в любом направлении.
При использовании специальных соленоидов можно получить многополюсные магниты или магниты со специальной формой магнитного поля.
Разумеется, такие сложные соленоиды могут стоить очень дорого в зависимости от сложности конструкции и требуемой производительности.
Литые магнитопласты – при этом способе производства магнитов порошок NdFeB смешивается с полимерным материалом и выдавливается в форму. Получающиеся магнитные изделия имеют энергию продукта до 5 МГсЭ, но могут быть сделаны замысловатых форм.
Спеченные неомагниты – мелкий порошок NdFeB запрессовывается в форму, затем спекается и обрабатывается до нужного размера (шлифуется).
Производство неодимовых магнитов – сложный высокотехнологичный процесс, требующий соблюдения состава, содержания примесей. Все операции, кроме шлифовки в размер, проводятся без доступа кислорода в вакууме или атмосфере инертных газов. Направление намагниченности задается текстурой магнитного поля во время прессования.
Изготовление электромагнитов
Электромагниты производятся с помощью обмотки проволоки вокруг металлического сердечника. Меняя размеры сердечника и длину проволоки меняют мощность поля, количество употребляемого электричества и размеры устройства.
Выплавка
Оператор загружает в электрическую вакуумную печь все компоненты будущего магнита. После проверки оборудования и соответствия количества материала, печь закрывают. С помощью насоса из камеры откачивают весь воздух и запускают процесс плавки.
Воздух из камеры извлекают для того, чтобы предотвратить окисление железа и возможную потерю мощности полей. Расплавленная смесь самостоятельно выливается в форму, а оператор ожидает ее полного остывания. В результате получается брикет, уже имеющий магнитные свойства.
Измельчение
Однородный сплав в специальных дробилках измельчают в два этапа.
В результате первичного дробления брикета, получают крупные частицы, размером в мелкую щебенку. После вторичного дробления образуется порошок с размером частиц в несколько микронов. Это необходимо, чтобы на следующем этапе, правильно выставить магнитные поля.
Прессование
Порошок загружают в специальный аппарат, где под воздействием магнитного поля и механического давления его прессуют в брикеты, требуемых размеров и форм. Во время воздействия магнитного поля, намагниченные частицы внутри порошка направляются в одну сторону.
В результате выравнивается полярность будущего магнита.
Готовые брикеты пакуют в герметичные пакеты и выкачивают изнутри воздух. Это необходимо, чтобы предотвратить окисление металла и потери магнитных свойств.
Спекание
Брикет помещают в специальную печь, из которой удаляют воздух и под воздействием высокой температуры спекают все компоненты в единый магнит. Изделие приобретает высокую прочность и увеличивает мощность магнитных полей.
Завершение производства
Магниты могут дополнительно нарезать, шлифовать и покрывать защитным слоем. Готовые изделия проходят контроль качества, упаковываются и отправляются заказчику.
Интересный факт: первая шахта по выработке магнитной руды была построена на холмах магнезии в Малой Азии. С ее недр было выработано множество тонн руды, которую использовали для производства компасов и других уникальных инструментов.
Технология производства магнитов заключается в смешивании нескольких компонентов и получении изделия, издающего магнитное поле. В зависимости от состава и пропорций, в каждом отдельном случае процесс будет немного отличаться. Готовые изделия будут использоваться в разных сферах нашей жизни, начиная от крупных электродвигателей и заканчивая сувенирами на холодильник.
Видео
Что такое магнит? Виды и свойства магнитов.
Еще в древние времена люди обнаружили уникальные свойства определенных камней — притягивание металла. В наше время мы часто сталкиваемся с предметами, которые обладают этими качествами. Что такое магнит? В чем его сила? Об этом мы расскажем в этой статье.
Определение
Что такое магнит? Это материал, имеющий определенную степень намагниченности. Эта способность возникает благодаря тому, что молекулы магнита имеют свое поле и движутся не хаотично, как во многих других веществах, а строго в двух направлениях. Эта взаимная противоположность обладает свойствами притяжения и отталкивания металлических предметов. Если попробовать соединить магниты с одинаковыми полюсами, то можно почувствовать отторжение. Противоположные стороны, в свою очередь, притянутся друг друга. Это связано с тем, в каком направлении движутся волны магнитных полей. Стоит отметить, что ни один кусок магнита не может быть однополярным. При его разламывании молекулы в каждом кусочке снова образуют северный и южный полюса.
Виды магнитов
Что такое магниты и в чем их отличие? Работа многих электроприборов, датчиков, домашней техники зависит от типа магнитов, которые в них присутствуют. Каждый обладает своими особенностями. Они выполняет определенные функции, в зависимости от сферы использования. К основным видам относятся электромагниты, постоянные и временные магниты. Стоит рассмотреть подробнее каждый вид.
Что такое постоянный магнит? Это материал, способный продолжительное время сохранять намагниченность. Его молекулы движутся в постоянном направлении и образуют магнитное поле при отсутствии электрического тока. Его еще называют природным магнитом.
Примером временного магнита являются скрепки, кнопки, гвозди, нож и другие предметы обихода, изготовленные из железа. Их сила в том, что они притягиваются к постоянному магниту, а при исчезновении магнитного поля, теряют свое свойство.
Полем электромагнита можно управлять с помощью электрического тока. Как это происходит ? Провод, витками намотанный на железный сердечник, при подаче и изменении величины тока меняет силу магнитного поля и его полярность.
Типы постоянных магнитов
Ферритовые магниты являются самыми известными и активно используемыми в быту. Этот материал черного цвета может использоваться в качестве крепежей различных предметов, например, для плакатов, для настенных досок, используемых в офисе или школе. Они не теряют своих свойств притяжения при температуре не ниже 250 о С.
Альнико — магнит, состоящий из сплава алюминия, никеля и кобальта. Это дало ему такое название. Очень устойчив к высоким температурам и может применяться при 550 о С . Материал отличается легкостью, но полностью теряет свои свойства, попадая под действие более сильного магнитного поля. Используется в основном в научной отрасли.
Самариевые магнитные сплавы — это материал с высокими показателями. Надежность его свойств позволяет использовать материал в военных разработках. Он устойчив к агрессивной среде, высокой температуре, окислению и коррозии.
Что такое неодимовый магнит? Это самый популярный сплав железа, бора и неодима. Его еще называют супермагнитом, так как он имеет мощнейшее магнитное поле с высокой коэрцитивной силой. Соблюдая определенные условия во время эксплуатации, неодимовый магнит способен сохранить свои свойства на протяжении 100 лет.
Что такое магнит, мы выяснили. Далее рассмотрим применение самых востребованных и популярных сплавов.
Использование неодимовых магнитов
Стоит подробно рассмотреть, что такое неодимовый магнит? Это материал, который способен фиксировать потребление воды, электричества и газа в счетчиках, да и не только. Этот вид магнита относится к постоянным и редкоземельным материалам. Он устойчив перед силой магнитных полей других сплавов и не подвержен размагничиванию.
Изделия из неодима используют в медицинских и промышленных отраслях. Также в бытовых условиях их применяют для крепления портьер, элементов декора, сувениров. Они применяются в поисковых приборах и в электронике.
Для продления срока службы магниты такого типа покрывают цинком или никелем. В первом случае напыление более надежное, так как устойчиво к агрессивным средствам и выдерживает температуру выше 100 о С. Сила магнита зависит от его формы, размера и количества неодима, входящего в состав сплава.
Применение ферритовых магнитов
Ферриты считаются самыми популярными магнитами среди постоянных видов. Благодаря стронцию, входящему в состав, материал не поддается коррозии. Так что это такое — ферритовый магнит? Где он применяется? Этот сплав довольно хрупок. Поэтому его еще называют керамическим. Применяется ферритовый магнит в автомобилестроении и промышленности. Используется в различной технике и электроприборах, а также бытовых установках, генераторах, системах акустики. При производстве автомобилей магниты используют в системах охлаждения, стеклоподъемниках и вентиляторах.
Назначение феррита — защитить технику от внешних помех и не допустить порчи сигнала, получаемого по кабелю. Благодаря этому свойству магниты используют при производстве навигаторов, мониторов, принтеров и другого оборудования, где важно получить чистый сигнал или изображение.
Магнитотерапия
Нередко применяется физиотерапия магнитом. Что это такое? Эта процедура называется магнитотерапия и проводится в лечебных целях. Действие этого метода заключается в том, чтобы повлиять на организм пациента с помощью магнитных полей, находящихся под низкочастотным переменным или постоянным током. Этот метод лечения помогает избавиться от многих заболеваний, снять боли, укрепить иммунную систему, улучшить кровоток.
Считается, что болезни порождаются нарушением магнитного поля человека. Благодаря физиотерапии организм приходит в норму и общее состояние улучшается.
Из данной статьи вы узнали, что такое магнит, а также изучили его свойства и сферы применения.
Постоянные магниты
Одно из самых удивительных явлений природы – это проявление магнетизма у некоторых материалов. Постоянные магниты известны с древних времён. До свершения великих открытий в сфере электричества постоянные магниты активно использовались лекарями разных народов в медицине. Доставались они людям из недр земли в виде кусков магнитного железняка. Со временем люди научились создавать искусственные магниты, помещая изделия из сплавов железа рядом с природными источниками магнитного поля.
Природа магнетизма
Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?
Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.
В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически. Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются. Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу.
При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).
Как увидеть магнитное поле
Чтобы визуально ощутить структуру магнитного поля, достаточно провести несложный эксперимент. Для этого берут два магнита и мелкую металлическую стружку.
Важно! В обиходе постоянные магниты встречаются двух форм: в виде прямой полосы и подковы.
Накрыв полосовой ПМ листом бумаги, на него насыпают железные опилки. Частички мгновенно выстраиваются вдоль силовых линий магнитного поля, что даёт наглядное представление о данном явлении.
Виды магнитов
Постоянные магниты разделяют на 2 вида:
Естественные
В природе естественный постоянный магнит – это ископаемое в виде обломка железняка. Магнитная порода (магнетит) в каждом народе имеет своё название. Но в каждом наименовании присутствует такое понятие, как «любящий», «притягивающий металл». Название Магнитогорск означает расположение города рядом с горными залежами естественного магнетита. В течение многих десятков лет здесь велась активная добыча магнитной руды. На сегодня от Магнитной горы ничего не осталось. Это была разработка и добыча естественного магнетита.
Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов.
Искусственные
Искусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов.
В условиях заводского производства применяют сложные металлические сплавы. В структуру сплава «магнико» входят железо, никель и кобальт. В состав сплава «альнико» вместо железа включают алюминий.
Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ.
Применение постоянных магнитов
Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками. В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:
Сферы, где применяют постоянные магниты:
- Экология;
- Гальваника;
- Медицина;
- Транспорт;
- Компьютерные технологии;
- Бытовые приспособления;
- Электротехника.
Экология
Разработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы.
Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.
Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.
Гальваника
Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.
Медицина
В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.
Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.
Транспорт
Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.
Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье.
Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.
Компьютерные технологии
Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.
Бытовые приспособления
В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.
Электротехника
Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.
Радиотехника
ПМ используют с целью повышения компактности радиотехнических приборов, обеспечения автономности устройств.
Генераторы
Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.
Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.
Электродвигатели
В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.
Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.
Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.
Дополнительная информация. Отличительная особенность устройства – это наличие датчика Холла, регулирующего обороты ротора.
Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.
Видео
Что такое магнит?
Каждый держал в руках магнит и забавлялся им в детстве. Магниты могут быть самыми разными по форме, размерам, но все магниты имеют общее свойство — они притягивают железо. Похоже, что они и сами сделаны из железа, во всяком случае, из какого-то металла точно. Есть, однако, и «черные магниты» или «камни», они тоже сильно притягивают железки, и особенно друг друга.
Но на металл они не похожи, легко бьются, как стеклянные. В хозяйстве магнитам находится множество полезных дел, например, удобно с их помощью «пришпиливать» бумажные листы к железным поверхностям. Магнитом удобно собирать потерянные иголки, так что, как мы видим, это совсем небесполезная вещь.
Наука 2.0 — Большой скачок — Магниты
Магнит в прошлом
Ещё древние китайцы более 2000 лет назад знали о магнитах, по крайней мере то, что это явление можно использовать для выбора направления при путешествиях. То есть придумали компас. Философы в древней Греции, люди любопытные, собирая различные удивительные факты, столкнулись с магнитами в окрестностях города Магнесса в Малой Азии. Там и обнаружили странные камни, которые могли притягивать железо. По тем временам, это было не менее удивительным, чем могли бы стать в наше время инопланетяне.
Еще более удивительным казалось, что магниты притягивают далеко не все металлы, а только железо, и само железо способно становиться магнитом, хотя и не таким сильным. Можно сказать, что магнит притягивал не только железо, но и любопытство ученых, и сильно двигал вперед такую науку, как физика. Фалес из Милета писал о «душе магнита», а римлянин Тит Лукреций Кар – о «бушующем движении железных опилок и колец», в своем сочинении «О природе вещей». Уже он мог заметить наличие двух полюсов у магнита, которые потом, когда компасом начали пользоваться моряки, получили названия в честь сторон света.
Что такое магнит. Простыми словами. Магнитное поле
За магнит взялись всерьез
Природу магнитов долгое время не могли объяснить. С помощью магнитов открывали новые континенты (моряки до сих пор относятся к компасу с огромным уважением), но о самой природе магнетизма по прежнему никто ничего не знал. Работы велись только по усовершенствованию компаса, чем занимался еще географ и мореплаватель Христофор Колумб.
В 1820 году датский ученый Ганс Христиан Эрстед сделал важнейшее открытие. Он установил действие провода с электрическим током на магнитную стрелку, и как ученый, выяснил опытами как это происходит в разных условиях. В том же году французский физик Анри Ампер выступил с гипотезой об элементарных круговых токах, протекающих в молекулах магнитного вещества. В 1831-ом году англичанин Майкл Фарадей с помощью катушки из изолированного провода и магнита проводит опыты, показывающие, что механическую работу можно превратить в электрический ток. Он же устанавливает закон электромагнитной индукции и вводит в обращение понятие «магнитное поле».
Ганс Христиан Эрстед
Закон Фарадея устанавливает правило: для замкнутого контура электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур. На этом принципе работают все электрические машины — генераторы, электродвигатели, трансформаторы.
В 1873 году шотландский ученый Джеймс К. Максвелл сводит магнитные и электрические явления в одну теорию, классическую электродинамику.
Вещества, способные намагничиваться, получили название ферромагнетиков. Это название связывает магниты с железом, но кроме него, способность к намагничиванию обнаруживается еще у никеля, кобальта, и некоторых других металлов. Поскольку магнитное поле уже перешло в область практического использования, то и магнитные материалы стали предметом большого внимания.
Начались эксперименты со сплавами из магнитных металлов и различными добавками в них. Стоили получаемые материалы очень дорого, и если бы Вернеру Сименсу не пришла в голову идея заменить магнит сталью, намагничиваемой сравнительно небольшим током, то мир так бы и не увидел электрического трамвая и компании Siemens. Сименс занимался еще телеграфными аппаратами, но тут у него было много конкурентов, а электрический трамвай дал фирме много денег, и в конечном счете, потянул за собой все остальное.
Основные величины, связанные с магнитами в технике
Мы будем интересоваться в основном магнитами, то есть ферромагнетиками, и оставим немного в стороне остальную, очень обширную область магнитных (лучше сказать, электромагнитных, в память о Максвелле) явлений. Единицами измерений у нас будут те, которые приняты в СИ (килограмм, метр, секунда, ампер) и их производные:
l Напряженность поля, H, А/м (ампер на метр).
Эта величина характеризует напряженность поля между параллельными проводниками, расстояние между которыми 1 м, и протекающий по ним ток 1 А. Напряженность поля является векторной величиной.
l Магнитная индукция, B, Тесла, плотность магнитного потока (Вебер/м.кв.)
Эта отношение тока через проводник к длине окружности, на том радиусе, на котором нас интересует величина индукции. Окружность лежит в плоскости, которую провод пересекает перпендикулярно. Сюда входит еще множитель, называемый магнитной проницаемостью. Это векторная величина. Если мысленно смотреть в торец провода и считать, что ток течет в направлении от нас, то магнитные силовые окружности «вращаются» по часовой стрелке, а вектор индукции приложен к касательной и совпадает с ними по направлению.
l Магнитная проницаемость, μ (относительная величина)
Если принять магнитную проницаемость вакуума за 1, то для остальных материалов мы получим соответствующие величины. Так, например, для воздуха мы получим величину, практически такую же как и для вакуума. Для железа мы получим существенно большие величины, так что можно образно (и весьма точно) говорить, что железо «втягивает» в себя силовые магнитные линии. Если напряженность поля в катушке без сердечника будет равняться H, то с сердечником мы получаем μH.
l Коэрцитивная сила, А/м.
Коэрцитивная сила показывает, насколько магнитный материал сопротивляется размагничиванию и перемагничиванию. Если ток в катушке совсем убрать, то в сердечнике будет остаточная индукция. Чтобы сделать ее равной нулю, нужно создать поле некоторой напряженности, но обратной, то есть пустить ток в обратном направлении. Эта напряженность и называется коэрцитивной силой.
Поскольку магниты на практике всегда используются в какой-то связи с электричеством, то не стоит удивляться тому, что для описания их свойств используется такая электрическая величина, как ампер.
Из сказанного следует возможность, например, гвоздю, на который подействовали магнитом, самому стать магнитом, хотя и более слабым. На практике выходит, что даже дети, забавляющиеся магнитами, об этом знают.
К магнитам в технике предъявляют разные требования, в зависимости от того, куда идут эти материалы. Ферромагнитные материалы делятся на «мягкие» и «жесткие». Первые идут на изготовление сердечников для приборов, где магнитный поток постоянный или переменный. Хорошего самостоятельного магнита из мягких материалов не сделаешь. Они слишком легко размагничиваются и здесь это как раз их ценное свойство, поскольку реле должно «отпустить» если ток выключен, а электрический мотор не должен греться — на перемагничивание расходуется лишняя энергия, которая выделяется в форме тепла.
КАК ВЫГЛЯДИТ МАГНИТНОЕ ПОЛЕ НА САМОМ ДЕЛЕ? Игорь Белецкий
Постоянные магниты, то есть те, которые магнитами и называют, требуют для своего изготовления жестких материалов. Жесткость имеется в виду магнитная, то есть большая остаточная индукция и большая коэрцитивная сила, поскольку, как мы видели, эти величины тесно связаны между собой. На такие магниты идут углеродистые, вольфрамовые, хромистые и кобальтовые стали. Их коэрцитивная сила достигает значений около 6500 А/м.
Есть особые сплавы, которые называются альни, альниси, альнико и множество других, как можно догадаться в них входят алюминий, никель, кремний, кобальт в разных сочетаниях, которые обладают большей коэрцитивной силой — до 20000…60000 А/м. Такой магнит не так-то просто оторвать от железа.
Есть магниты, специально предназначенные для работы на повышенной частоте. Это многим известный «круглый магнит». Его «добывают» из негодного динамика из колонки музыкального центра, или автомагнитолы или даже телевизора прошлых лет. Этот магнит изготовлен путем спекания окислов железа и специальных добавок. Такой материал называется ферритом, но не каждый феррит специально так намагничивается. А в динамиках его применяют из соображений уменьшения бесполезных потерь.
Силовое поле магнита
Магниты. Discovery. Как это работает?
Что происходит внутри магнита?
Благодаря тому, что атомы вещества являются своеобразными «сгустками» электричества, они могут создавать свое магнитное поле, но только у некоторых металлов, имеющих сходное атомное строение, эта способность выражена очень сильно. И железо, и кобальт, и никель стоят в периодической системе Менделеева рядом, и имеют похожие строения электронных оболочек, которое превращает атомы этих элементов в микроскопические магниты.
Поскольку металлы можно назвать застывшей смесью различных кристаллов очень маленького размера, то понятно, что магнитных свойств у таких сплавов может быть очень много. Многие группы атомов могут «разворачивать» свои собственные магниты под влиянием соседей и внешних полей. Такие «сообщества» называются магнитными доменами, и образуют весьма причудливые структуры, которые до сих пор с интересом изучаются физиками. Это имеет большое практическое значение.
Как уже говорилось, магниты могут иметь почти атомные размеры, поэтому наименьший размер магнитного домена ограничивается размером кристалла, в который встроены атомы магнитного металла. Этим объясняется, например, почти фантастическая плотность записи на современные жесткие диски компьютеров, которая, видимо, еще будет расти, пока у дисков не появятся конкуренты посерьезнее.
Магнитное силовое поле
Гравитация, магнетизм и электричество
Где применяются магниты?
Кроме электродвигателей, трансформаторов, реле, сердечники которых являются магнитами из магнитов, хотя обычно их называют просто сердечниками, магниты находят еще множество применений. Есть канцелярские магниты, магниты для защелкивания мебельных дверей, магниты в шахматах для путешественников. Это известные всем магниты.
К более редким видам относятся магниты для ускорителей заряженных частиц, это очень внушительные сооружения, которые могут весить десятки тонн и больше. Хотя сейчас экспериментальная физика поросла травой, за исключением той части, которая тут же приносит сверхприбыли на рынке, а сама почти ничего не стоит.
Еще один любопытный магнит установлен в медицинском навороченном приборе, который называется магнитно-резонансным томографом. (Вообще-то метод называется ЯМР, ядерный магнитный резонанс, но чтобы не пугать народ, который в массе не силен в физике, его переименовали.) Для прибора требуется помещение наблюдаемого объекта (пациента) в сильное магнитное поле, и соответствующий магнит имеет устрашающие размеры и форму дьявольского гроба.
Человека кладут на кушетку, и прокатывают через тоннель в этом магните, пока датчики сканируют место, интересующее врачей. В общем, ничего страшного, но у некоторых клаустрофобия доходит до степени паники. Такие охотно дадут себя резать живьем, но не согласятся на обследование МРТ. Впрочем, кто знает, как человек чувствует себя в необычно сильном магнитном поле с индукцией до 3 Тесла, после того, как заплатил за это хорошие деньги.
Чтобы получить такое сильное поле, часто используют сверхпроводимость, охлаждая катушку магнита жидким водородом. Это дает возможность «накачивать» поле без опасений, что нагрев проводов сильным током ограничит возможности магнита. Это совсем недешевая установка. Но магниты из специальных сплавов, которые не требуют подмагничивания током, стоят значительно дороже.
Наша Земля тоже является большим, хотя и не очень сильным магнитом. Он помогает не только владельцам магнитного компаса, но и спасает нас от гибели. Без него мы были бы убиты солнечной радиацией. Картина магнитного поля Земли, смоделированная компьютерами по данным наблюдений из космоса выглядит очень внушительно.
Вот небольшой ответ на вопрос, о том, что такое магнит в физике и технике.