Как получают высокопрочные чугуны
Как получают высокопрочный чугун
Модификаторы инокулирующего действия ( ферросилиций, силикокальций, С, Аl, сплавы титана, циркония, некоторых лантаноидов, бария, стронция ) позволяют опустить в чугуне содержание Si и С без появления бледна, размельчают графит, в итоге чего растет количество перлита и улучшаются механические свойства серого чугуна.
Введение Sn, Pb, Р, Sb, N и других модификаторов способствует получению перлитных серых чугунов.
Введение Bi и повышение содержания S резко отбеливают чугун.
В ковком чугуне некоторые модификаторы связывают такие вредные примеси, подобно азоту ( в виде AIN, BN ) и хром ( в виде атомных сегрегаций типа Sb 2 Cr 3 ).
Некоторые модификаторы ( магний, большинство лантаноидов, иттрий ) при определённой их дозе вызывают выделение графита округлой фигуры, вследствие чего образуется чугун с шаровидным графитом, называемый высокопрочным.
Таковой вид модифицирования существенно увеличивает прочность чугуна и сильно повышает его пластичность и вязкость.
Главные способы модифицирования : на жёлобе печей, в автоклавах, в специальных ковшиках, например герметизированных, вдуванием, введением модификаторов через лигатуры или соли, в литниковых системах литейных формочек.
Высокопрочные чугуны применяют в разных областях техники, эффективно заменяя сталь во многих продуктах и устройствах.
Из них изготовляют оборудование прокатных станов ( прокатные валки массой до 12 т ), кузнечно – прессовое оборудование ( траверса пресса, шабот ковочного молота ), в турбостроении корпус паровой турбины, лопатки направляющего аппарата, в дизеле -, тракторо – и автомобилестроении – коленчатые валы, поршни и ответственные многие другие детали, работающие при высоких циклических нагрузках и в условиях изнашивания.
Отличительной особенностью высокопрочного чугуна являются механические его высокие свойства, обусловленные наличием в структуре шаровидного графита, который в меньшей степени, чем пластинчатый графит в сером чугуне, ослабляет рабочее сечение металлической основы и, что еще важнее, не оказывает на нее сильного надрезающего действия, благодаря чему вокруг включений графита в меньшей степени создаются концентраторы напряжений.
Чугун с шаровидным графитом обладает не только высокой крепостью, но и пластичностью.
Чугун с шаровидным графитом применяется также в химическом и нефтяном машиностроении ( трубы, детали насосов и компрессоров, покрышки и кольца буровых машинок, задвижки и арматура крекинговых установок, корпусы автоклавов ), в автотракторной промышленности и сельскохозяйственном машиностроении ( коленчатые и распределительные валы, тормозные барабаны, картеры коробок передач, картеры задних мостиков, ступицы колес, сошники плугов, зубья борон, шестерни сялок, диски лущильников ), в станкостроении ( корпуса токарных патронов, суппорты, резцедержатели, шпиндели, рычажки механизмов зажимов револьверных станков и станков – автоматов, задние бабки токарных и шлифовальных станков, шестерни, шкивы ), для изготовления шахтных и тоннельных тюбингов, изложниц для разливки стали и т.д.
Химический состав высокопрочного чугуна ВЧ 50 ГОСТ 7293 – 85.
: C углерод при толщине стены до 50 мм 3, 3 – 3, 8% ;
C углерод при толщине стены от 50 до 100 мм 3, 0 – 3, 5% ;
C углерод при толщине стены более 100 мм 2, 7 – 3, 2% ;
Si кремний при толщине стены до 50 мм 1, 9 – 2, 9% ;
Si кремний при толщине стены от 50 до 100 мм 1, 2 – 1, 7% ;
Si кремний при толщине стены более 100 мм 0, 5 – 1, 5% ;
Mn марганец 0, 2 – 0, 6% ;
ĺ°?
r хром 0, 1% ;
S менее 0, 02% ;
P фосфор менее 0, 1%.
Механические свойства высокопрочного чугуна ВЧ 50 ГОСТ 7293 – 85 : лимит крепости ( временное сопротивление ) σ в ВЧ 40 = 400 Мпа ;
Включая небольшое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать сей материал для подробностей, которые подвергаются сжимающим или изгибающим нагрузкам.
В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, ведущие ;
в автостроении – блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления.
Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.
Графи́т ( от др. – греч.
γράφω — пишу ) — минерал из класса самородных элементов, одна из аллотропных модификаций углерода.
Структура слоистая.
Ряды кристаллической решётки могут по-разному располагаться относительно товарищ дружка, создавая единый ряд политипов, с симметрией от гексагональной сингонии ( дигексагонально – дипирамидальный ), до тригональной ( дитригонально – скаленоэдрический ).
Слои слабоволнистые, почти плоские, заключаются из шестиугольных слоёв атомов углерода.
Кристаллы пластинчатые, чешуйчатые.
Образует листоватые и округлые радиально – лучистые агрегаты, реже — агрегаты концентрически – зонального строения.
У крупнокристаллических выделений часто треугольная штриховка на плоскостях ( 0001 ).
Легированные Ч. Для улучшения прочностных, эксплуатационных свойств или придания Ч. особенных характеристик ( износостойкости, жаропрочности, жаростойкости, коррозионностойкости, немагнитности и т.д. ) в его состав вводят легирующие элементы ( Ni, Cr, Cu, Al, Ti, W, V, Mo и др. ).
Легирующими элементами могут служить также Mn при содержании > 2% и Si при содержании > 4%.
Легированные Ч. группируют в соответствии с содержанием основных легирующих элементов — хромистые, никелевые, алюминиевые и т.д.
По степени легирования различают низколегированные ( совокупное количество легирующих элементов 10% ).
Низколегированные Ч. имеют перлитную или бейнитную структуру матрицы, среднелегированные — обычно мартенситную, высоколегированные — в большинстве случаев аустенитную или ферритную.
Для получения химически активных металлов методом электролиза расплавленных соединений.
В частности, при получении алюминия используются сразу два свойства графита : Хорошая электропроводность, и подобно следствию — его пригодность для изготовления электрода Газообразность продукта реакции, протекающей на электроде — это углекислый газ.
Газообразность продукта означает, что он выходит из электролизёра сам, и не спрашивает особых степеней по его удалению из полосы реакции.
Это свойство значительно упрощает технологию производства алюминия.
Высокопрочный чугун
Высокопрочными называют чугуны, в которых графит имеет шаровидную форму. Их получают модифицированием магнием, церием, иттрием, которые вводят в жидкий чугун в количестве 0,02-0,08%. По структуре металлической основы высокопрочный чугун может быть ферритным (допускается до 20% перлита) или перлитным (допускается до 20% феррита). Шаровидный графит является более слабым концентратором напряжений, чем пластинчатый графит, поэтому меньше снижает механические свойства чугуна (рис.8.). Высокопрочный чугун обладает более высокой прочностью и некоторой пластичностью.
Маркируют высокопрочные чугуны по ГОСТ 7293-85 буквами ВЧ и двузначным числом, показывающим минимальное значение предела прочности на растяжение в десятках мегапаскалей. Например, высокопрочный чугун ВЧ 40 имеет временное сопротивление при растяжении 400 MПa, относительное удлинение – не менее 10%, твердость НВ = 1400-2200 МПа, структура феррито-перлитная. Маркировка по предшествующему ГОСТу 7293-79 предусматривала дополнительное указание относительного удлинения в процентах, например, ВЧ 40-10.
Обычный состав высокопрочного чугуна: 2,7-3,8%С; 1,6-2,7%Si; 0,2-0,7%Мn; £ 0,02%S; £ 0,1%Р.
Из высокопрочных чугунов изготавливают прокатные валки, кузнечно-прессовое оборудование, корпуса паровых турбин, коленчатые валы и другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.
Рис. 8. Микроструктура высокопрочного чугуна на ферритной (а), феррито-перлитной (б) и перлитной (в) основе.
Ковкими называют чугуны, в которых графит имеет хлопьевидную форму. Их получают путем специального графитизирующего отжига (томления) отливок из белых доэвтектических чугунов. Отливки загружают в специальные ящики, засыпают песком или стальными стружками для защиты от окисления и производят нагрев и охлаждение по схеме (рис.9). При температуре 950 -1000°С происходит графитизация эвтектического и вторичного цементита (превращение метастабильного цементита в стабильный графит и аустенит). При второй выдержке при температуре 720 – 740°С графитизируется цементит образовавшегося перлита (иногда вместо выдержки проводят медленное охлаждение от 770°С до 700°С в течение 30 часов, при этом происходит кристаллизация по стабильной диаграмме с выделением углерода в свободном состоянии). В результате продолжительного отжига весь углерод выделяется в свободном состоянии.
Обычный состав ковкого чугуна 2,4-2,8 %С; 0,8-1,4%Si; ≤1% Мп; ≤0,1%S; ≤ 0,2 % Р. Структура – ферритная или феррито-перлитная (рис.10).
Отсутствие литейных напряжений, снятых во время отжига, благоприятная форма и изолированность графитных включений обуславливают высокие механические свойства ковких чугунов.
Маркируют ковкие чугуны по ГОСТ 1215-79 буквами КЧ и двумя числами, первое из которых – минимальный предел прочности на растяжение в десятках мегапаскалей, а второе – относительное удлинение в %. Например, чугун КЧ 45-6 имеет временное сопротивление при растяжении 450 МПа, относительное удлинение δ=6%, НВ=2400МПа и структуру – феррит+перлит.
Рис. 9. Схема отжига белого чугуна на ковкий чугун.
Из ковкого чугуна изготавливают детали высокой прочности, работающие в тяжелых условиях износа, способные воспринимать ударные и знакопеременные нагрузки, в том числе клапаны, муфты, картеры редукторов, коленчатые валы и др.
Рис.10. Микроструктура ковкого чугуна на ферритной (а) феррито-перлитной (б) основе.
Простые углеродистые стали далеко не всегда удовлетворяют требованиям техники. В промышленности широко применяются легированные стали, которые обладают высокими механическими или особыми физическими и химическими свойствами, приобретаемыми после соответствующей термической обработки. Легированными называются стали, в которые для получения требуемых свойств специально добавляются определенные количества необходимых элементов. Для легирования стали применяют хром, никель, марганец, кремний, вольфрам, ванадий, молибден и другие.
Изучая влияние легирующих элементов на свойства стали, важно знать взаимодействие легирующего элемента с железом и углеродом, а также влияние легирующих элементов на полиморфизм железа и превращения в стали при термической обработке.
Влияние элементов на полиморфизм.
Все элементы, которые растворяются в железе, влияют на температурный интервал существования его полиморфных модификаций.
Большинство элементов либо расширяют область существования γ-модификации (рис. 2.1а), либо расширяют область существования α -модификации ( рис.2.1б).
Из схематических диаграмм состояния железо – легирующий элемент ( рис.2.1) следует, что при содержании марганца, никеля свыше определенного количества (c) (рис.2.1а) γ-состояние существует как стабильное от температуры плавления до комнатной температуры. Такие сплавы на основе железа называются аустенитными. При содержании ванадия, молибдена, кремния и других элементов свыше определенного значения (d) устойчивым при всех температурах является α-состояние ( рис.2.1б). Такие сплавы на основе железа называются ферритными. Аустенитные и ферритные сплавы не имеют превращений при нагревании и охлаждении.
Рис. 11. Схема диаграмм состояния железо – легирующий элемент.
Распределение легирующих элементов в сталях.
В промышленных легированных сталях легирующие элементы могут:
находиться в свободном состоянии: свинец, серебро, медь (если ее не более 1%) не образуют соединения и не растворяются в железе;
образовывать интерметаллические соединения с железом или между собой при большом содержании легирующих элементов, встречаются, в основном, в высоколегированных сталях;
образовывать окислы, сульфиды и другие неметаллические включения – элементы, имеющие большее сродство к кислороду, чем железо. В процессе производства стали такие элементы (например, Mn, Si, Al), введенные в последний момент плавки, раскисляют сталь, отнимая кислород у железа. Количество окислов, сульфидов и других неметаллических включений в обычных промышленных сталях невелико и зависит от метода ведения плавки;
растворяться в цементите или образовывать самостоятельные карбидные фазы. Карбидообразующими элементами могут быть элементы, имеющие большее, чем железо, сродство к углероду (элементы, расположенные в периодической системе элементов левее железа): Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re. Указанные элементы, кроме того, что они образуют карбиды, растворяются в железе. Следовательно, они в известной пропорции распределяются между этими двумя фазами;
растворяться в железе – большинство легирующих элементов. Элементы, расположенные в периодической системе правее железа (Сu, Ni, Сo и др.) образуют только растворы с железом и не входят в карбиды.
Таким образом, легирующие элементы преимущественно растворяются в основных фазах железоуглеродистых сплавов – феррите и аустените, а также цементите или образуют специальные карбиды.
Влияние легирующих элементов на феррит и аустенит.
Растворение легирующих элементов в α,g-железе происходит путем замещения атомов железа атомами этих элементов. Атомы легирующих элементов, отличаясь от атомов железа размерами и строением, создают в решетке напряжения, которые вызывают изменение ее периода. Изменение размеров α,g-решетки вызывает и изменение свойств феррита и аустенита. Искажение решетки приводит к затруднению движения дислокаций. Указанные факторы вызывают упрочнение называемое твердорастворным.
Для примера на рис.2.2 показано изменение механических свойств феррита (твердость, ударная вязкость) при растворении в нем различных элементов.
Рис. 12. Влияние легирующих элементов на свойства феррита а – твердость; б – ударная вязкость
Как видно из диаграмм, хром, молибден, вольфрам упрочняют феррит меньше, чем никель, кремний и марганец. Молибден вольфрам, марганец и кремний снижают вязкость феррита. Хром уменьшает вязкость значительно слабее перечисленных элементов, а никель не снижает вязкости феррита.
Важное значение имеет влияние элементов на порог хладноломкости, что характеризует склонность стали к хрупкому разрушению. Наличие хрома в железе способствует некоторому повышению порога хладноломкости, тогда как никель интенсивно снижает порог хладноломкости, уменьшая тем самым склонность железа к хрупким разрушениям.
Приведенные данные относятся к медленно охлажденным сплавам.
Карбидная фаза в легированных сталях.
В сталях карбиды образуются только металлами, расположенными в периодической системе элементов левее железа. Эти металлы имеют менее достроенную d-электронную полосу. Чем левее расположен в периодической системе карбидообразующий элемент, тем менее достроена его d-полоса. Вместе с тем, многочисленные опыты показывают, что, чем левее в периодической системе расположен элемент, тем более устойчив карбид.
В процессе карбидообразования углерод отдает свои валентные электроны на заполнение d-электронной полосы атома металла. Только металлы с d-электронной полосой, заполненной меньше, чем у железа, являются карбидообразующими; активность их как карбидообразователей тем сильнее и устойчивость образующихся карбидных фаз тем больше, чем менее достроена d-полоса у металлического атома. Фактически мы встречаемся в сталях лишь с карбидами шести видов:
M3C | Карбиды I группы | MC | ![]() ![]() |
карбиды II группы |
M23C6 | ||||
M7C3 | M2C | |||
M6C |
где под М подразумевается сумма карбидообразующих элементов.
Карбиды, отнесенные в I группу, имеют сложную кристаллическую структуру. Особенность строения карбидов II группы заключается в том, что они имеют простую кристаллическую решетку и кристаллизуются обычно со значительным дефицитом по углероду. Карбиды II группы трудно растворимы в аустените. Это значит, что при нагреве (даже очень высоком) они могут не перейти в твердый раствор. Карбиды I группы легко растворяются в аустените.
Все карбидные фазы обладают высокой температурой плавления и высокой твердостью. Карбиды II группы в этом отношении превосходят карбиды I группы.
Порядок растворения карбидов в аустените определяется их относительной устойчивостью, а степень перехода в раствор – их количеством.
Классификация легированных сталей.
Легированные стали могут быть классифицированы по четырем признакам: по равновесной структуре (после отжига), по структуре после охлаждения на воздухе (после нормализации), по составу и по назначению.
Классификация по равновесной структуре
- Доэвтектоидные стали, имеющие в структуре избыточный феррит.
- Эвтектоидные стали, имеющие перлитную структуру.
- Заэвтектоидные стали, имеющие в структуре избыточные (вторичные) карбиды.
- Ледебуритные стали, имеющие в структуре первичные карбиды, выделившиеся из жидкой фазы. В литом виде избыточные карбиды совместно с аустенитом образуют эвтектику – ледебурит, который при ковке или прокатке разбивается на обособленные карбиды и аустенит.
- Ферритные стали.
- Аустенитные стали.
Большинство легирующих элементов сдвигают точки S и Е (на диаграмме Fе – С) в сторону меньшего содержания углерода, поэтому граница между доэвтектоидными и заэвтектоидными сталями, заэвтектоидными и ледебуритными – в легированных сталях лежит при меньшей содержании углерода, чем в углеродистых.
Классификация по структуре после охлаждения на воздухе
Исходя из структуры, получаемой после охлаждения на спокойном воздухе образцов небольшой толщины, можно выделать три основных класса сталей: 1. перлитный; 2. мартенситный; 3. аустенитный.
Стали перлитного класса характеризуются относительно малым содержанием легирующих элементов, мартенситного -более значительным и, наконец, аустенитного – высоким содержанием легирующих элементов. Получение этих классов стали обусловлено тем, что по мере увеличения содержания легирующих элементов устойчивость аустенита в перлитной области возрастает, а температурная область мартенситного превращения понижается.
Классификация по составу.
В зависимости от состава легированные стали классифицируются как никелевые, хромистые, хромоникелевые и т.п. Классификационный признак – наличие в стали тех или иных легирующих элементов.
В зависимости от количества легирующих элементов:
- низколегированные – суммарное количество легирующих элементов не превышает 3%.
- среднелегированные – суммарное количество легирующих элементов от 3% до 10%.
- высоколегированные – суммарное количество легирующих элементов более 10%, но менее 50%.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8837 –
Технология получения высокопрочного чугуна с шаровидным графитом
Известно, что высокопрочный чугун с шаровидным графитом (ВЧШГ) получают путем модифицирования жидкого чугуна сфероидизирующими модификаторами, содержащими магний, церий и иттрий. Чугун, подвергаемый модифицированию, должен удовлетворять ряду приведенных ниже требований, выполнение которых является задачей плавки.
Требования к жидкому чугуну.
Важнейшим требованием к химическому составу жидкого металла при получении высокопрочного чугуна с шаровидным графитом является низкое содержание серы — до 0,03%.Т1ри этом снижение содержания серы способствует уменьшению расхода дорогостоящих модификаторов.
Техническими условиями, принятыми на ВАЗе и КамАЗе, допускается содержание серы не более 0,012%. Составить шихту с таким низким содержанием серы практически невозможно, поэтому важнейшей задачей плавки является десульфурация. В связи с этим использование для плавки дуговых пеней с основной футеровкой в данном случае является оправданным, несмотря на высокое пылегазовыделение и шум.
При наведении основного шлака рекомендуется вводить известь (6 кг/т металла) для снижения избыточного количества серы на 0,001 %. Содержание в чугуне демодификаторов Pb, Bi, Sn, Sb, As, Ti, Al даже в незначительных количествах препятствует сфероидизации графита. С учетом этого требуется тщательный отбор шихтовых материалов. Не допускается использование лома неизвестного происхождения. Помимо первичных материалов и возврата используются стальные отходы кузнечно-прессового производства.
Температура чугуна при модифицировании должна быть выше, чем при модифицировании серого чугуна, 1480. 1530 °С. Это объясняется тем, что на испарение магния, введенного в расплав, требуется значительное количество теплоты (при введении каждого 1 % Mg температура чугуна снижается на 80. 90 °С).
Сфероидизирующне модификаторы.
Шаровидная форма графита в чугуне достигается использованием модификаторов, содержащих магний, церий и иттрий. Модификаторы на основе магния, в свою очередь, разделяют на металлический магний и магнийсодержащие лигатуры. Металлический магний имеет плотность в 4 раза меньшую, чем расплавленный чугун, поэтому при простом введении его в металл он всплывает и сгорает ослепительно ярким пламенем. При принудительном погружении его в расплав чугуна при температуре 1400 °С магний испаряется и давление его паров может достигать 0,7 МПа. Пары магния, выходя из расплава, вызывают интенсивное перемешивание и выбросы металла. Над поверхностью расплава пары магния сгорают. Обычно в металле остается не более 1/10 количества введенного в него магния.
Для улучшения усвоения магния расплавом используются магнийсодержащие лигатуры, магний—кремний—железо, магний-никель, магний—медь, магний—никель—медь и др. Особенно широкое распространение получили в свое время тяжелые лигатуры содержащие около 85 % никеля. Плотность такой лигатуры выше, чем жидкого чугуна, что в сочетании с относительно низким содержанием магния предопределяет ее хорошее усвоение и незначительный пироэффект.
Однако никель возвращается в шихту в составе возврата и практически не угорает в процессе плавки. Учитывая, что доля возврата при производстве ВЧШГ составляет не менее 40%, содержание никеля в металле быстро растет от плавки к плавке, если в шихте используется более 10 % возврата. Это создает организационные трудности, связанные с использованием излишков возврата чугуна, модифицированного никель-магниевой лигатурой.
Учитывая отбеливающее действие магния, производят вторичное модифицирование ферросилицием ФС75 в количестве от 0,3 до 1 % в зависимости от толщины стенки отливки.
Цериевые модификаторы. Температура кипения церия около 3450 °С, поэтому при вводе его в расплав чугуна не наблюдается выбросов металла, и, кроме того, температура расплава может быть ниже (1390. 1410 °С). Однако для равномерного распределения его необходимо принудительное перемешивание металла.
Церий, так же как и магний, является активным десульфуратором, но в отличие от магния не образует черных пятен в структуре отливок при повышенном содержании серы в исходном чугуне.
Для получения высокопрочного чугуна с шаровидным графитом церий применяется в виде многообразных лигатур, таких как ферроцерий, мишметалл, цериевый мишметалл, сиитмиш и другие, содержащие около 50 % Се.
Комплексные модификаторы, разнообразные по составу и свойствам, получили в настоящее время наибольшее распространение. Наряду с магнием, который производит сфероидизирующее действие и перемешивание, в них обычно входит кремний, предотвращающий отбел. Церий и кальций в комплексных модификаторах способствуют связыванию избытка серы.
Модификатор ФЦМ5, содержащий 5 % магния, успешно применялся при литье коленчатых валов трактора «Владимирец». В модификаторах марок ЖКМК1 . ЖКМК10 помимо железа содержатся Mg, Са, Si и редкоземельные элементы.
В настоящее время наибольшее применение имеют модификаторы ФСМг5 и ФСМг6, содержащие соответственно 5 и 6 % Mg и использующиеся как для внутриформенного, так и для ковшового модифицирования.
Сфероидизирующие модификаторы в размельченном состоянии не подлежат длительному хранению, так как входящие в них элементы легко окисляются.
Иттривые модификаторы не получили до настоящего времени промышленного применения.
Способы введения в расплав сфероидизирующих модификаторов. Из всего многообразия способов ввода в расплав сфероидизирующих модификаторов к настоящему времени получили применение лишь несколько способов, удовлетворяющих условиям техники безопасности и обеспечивающих достаточно высокий коэффициент усвоения модификатора. Способ ввода модификатора выбирают с учетом масштабов производства и стоимости применяемого оборудования.
Для целей лабораторных и исследовательских работ, а также при небольших объемах производства предпочтителен способ ввода модификатора под колокольчиком в ковше с металлической крышкой (рис.1, а).
Рис. 1. Способы ввода в расплав сфероидизирующих модификаторов: а — под колокольчиком; б — в автоклаве; в — в герметизированном ковше-конвертере; 1 — колокольчик; 2 — крышка; 3 — корпус автоклава; 4 — ковш с металлом; 5— мешалка; 6— полость для модификатора; 7— крышка ковша; 8 — модификатор
В шамотографитовый или стальной колокольчик 1 с отверстиями в боковых стенках закладывают бумажный пакет с навеской модификатора. Пакет закрепляют в колокольчике вязальной проволокой. Крышку 2 надевают на штангу колокольчика и устанавливают на ковш. Колокольчик опускают в глубь металла.
При использовании тяжелой никель-магниевой лигатуры широко используется ввод ее под струю в разливочный ковш.
При использовании в качестве модификатора металлического магния наилучшие результаты дает применение автоклава (рис.1, б). В стальной корпус автоклава 3 при снятой крышке устанавливают ковш с металлом 4. В полость 6 крышки закладывают навеску магния и закрывают ее мешалкой 5. Крышку устанавливают на корпус автоклава, стык между ними герметизирован. Между крышкой и штоком мешалки также имеется уплотняющая манжета. После подачи воздуха в автоклав под давлением Ρ пневматический цилиндр опускает мешалку вниз, при этом модификатор падает в металл, который перемешивается в процессе возвратно-поступательного движения мешалки.
Широкое распространение получили также герметизированные Ковши, принцип действия которых показан на рис. 1, в. В боковую полость ковша закладывают навеску модификатора 8. После заливки металла ковш закрывают крышкой и поворачивают в вертикальное положение.
Установлено, что минимальное количество остаточного магния, необходимое для получения шаровидной формы графита в чугуне в любом сечении отливки, должно быть не менее 0,03 %. С учетом коэффициента усвоения модификатора количество магния, вводимого с модификатором, должно быть около 0,4 %. При использовании комплексных сфероидизирующих модификаторов суммарное содержание в них магния, кальция и редкоземельных элементов должно быть эквивалентно указанному выше содержанию магния.
Расход модификатора зависит от его состава, способа ввода в металл, содержания в металле серы, температуры металла и других факторов и составляет от 0,15 % для металлического магния, вводимого в автоклаве, до 2,5 % для лигатур при добавлении их в ковш. Необходимое и достаточное количество вводимого модификатора уточняется только опытным путем.
Источник:
Трухов А.П., Маляров А.И. Литейные сплавы и плавка. М. Академия, 2004.
Высокопрочный чугун
Изучение микроструктур Чугунов
По химическому составу чугун отличается от стали более высоким содержанием углерода и постоянных примесей.
Чугунами называется железоуглеродистые сплавы с содержанием углерода более 2,14 %.
Свойства чугуна определяются его структурой. По сравнению со сталью чугуны обладают лучшими литейными свойствами, в частности, более низкими температурами плавления, и имеют меньшую осадку, характеризуются малой способностью к пластической деформации (в обычных условиях не поддаются ковке) Это объясняется присутствием в структуре чугунов легкоплавкой эвтектики. Структура и основные свойства чугунов зависят не только от химического состава, но и от процесса выплавки, условий охлаждения отливки ирежима термической обработки. В зависимости от скорости охлаждения, добавочного легирования и последующей термообработки различают следующие типы чугунов: белые, серые, высокопрочные, ковкие и половинчатые.
Белый чугун
Своё название белый чугун получил по виду излома, который имеет матово-белый цвет, что обусловлено присутствием в структуре большого количества цементита.
Белым чугуном называют чугун, у которого весь углерод находится в химически связанном состоянии в виде цементита – Fe3C.
Получают его при быстром охлаждении. Структура белых чугунов определяется метастабильной диаграммой Fe – Fe3C (рис. 1). В их структуре при комнатной температуре присутствует эвтектика – ледебурит, которая позволяет микроскопически отличать белые чугуны от углеродистых сталей.
Ледебурит – эвтектическая смесь, образующаяся при температуре 1147 °С из жидкости, содержащей 4.3 %С. В интервале от 1147 до 727 °С ледебурит состоит из аустенита и цементита, а при температуре ниже 727 °С из перлита и цементита.
В соответствии с диаграммой Fe – Fe3C белые чугуны делятся на доэвтектические, содержащие углерода от 2,14 до 4,3 % С;эвтектические, с содержанием углерода 4,3 %;заэвтектические, содержание углерода в которых от 4,3 до 6,67 %.
![]() ![]() |
Микроструктура белого доэвтектического чугуна при комнатной температуре состоит из перлита, вторичного цементита и ледебурита (рис. 2, а).
Эвтектический белый чугун состоит из одного ледебурита (рис. 2, б).
Заэвтектический белый чугун имеет структуру, состоящую из ледебурита и цементита первичного (рис. 2, в).
![]() ![]() |
Белые чугуны характеризуются высокой хрупкостью, твердостью (практически не поддаются обработке режущим инструментом) и имеют ограниченное применение как конструкционные материалы. Они обычно идут на передел в сталь либо используются для получения ковкого чугуна. В машиностроении белый чугун главным образом применяется для отливки валков прокатных станов, мукомольных валков, которые должны быть твердыми и износостойкими.
В зависимости от назначения передельный чугун выплавляют различных марок: П1 и П2 – для сталеплавильного производства; ПЛ1 и ПЛ2 – для литья отливок. Исходя из содержания примесей, различают передельный фосфористый чугун ПФ1, ПФ2 и ПФЗ и высококачественный – ПВК1, ПВК2 и ПВКЗ. Цифра в марке передельного чугуна дана для условной нумерации; химический состав приведен в ГОСТ 805 – 80; передельный чугун поставляют в чушках.
Серый чугун
Серые чугуны получили такое название по виду излома, который имеет серый цвет.
Отличительным признаком этих чугунов является присутствие в структуре свободного углерода в виде графита (рис. 3, а). Выделению углерода способствуют такие элементы, как кремний, никель, алюминий. Необходимо знать, что получают серые чугуны путем медленного охлаждения при кристаллизации по стабильной диаграмме (пунктирные линии, рис. 1). Графит, образующийся из жидкой фазы, растет из одного центра и, разветвляясь в разные стороны, приобретает форму сильно искривленных лепестков (рис. 3, б). В плоскости шлифа графит имеет вид прямолинейных или завихренных пластинок, которые представляют собой различные сечения графитных лепестков.
![]() ![]() |
Чугун, в структуре которого отсутствует эвтектический цементит, а включения гранита имеют форму пластинок, называется серым.
![]() ![]() |
В зависимости от скорости охлаждения металлическая основа серых чугунов может быть ферритной, феррито-перлитной, перлитной (рис. 4). При весьма медленном охлаждении и большом количестве графитообразующих элементов образуется ферритный серый чугун(рис. 5, а). В этом случае весь углерод находится в виде графита.
Некоторое увеличение скорости охлаждения или наличие элементов (марганца, хрома), тормозящих графитизацию, способствует образовании перлитного цементита. В зависимости от количества образовавшегося перлита может быть подучен феррито-перлитный чугун (рис. 5, б) или перлитный (рис. 5, в).
Графитные включения в сером чугуне можно рассматривать как трещины, поры, нарушающие целостность металлической матрицы. Чем больше графита в структуре чугуна, тем ниже его качество. Серый чугун отличается низкой пластичностью. Относительное удлинение образцов из серого чугуна на ферритной основе при растяжении составит 0,3 ¸ 0,8 %,перлитного – 0,2 ¸ 0,4 %.
![]() ![]() |
Плохо воспринимает серый чугун и динамические нагрузки. Вместе с тем присутствие графитных включений оказывает благоприятное влияние на ряд других свойств чугуна – обрабатываемость, антифрикционные свойства. Прочностные свойства серого чугуна зависят от прочности металлической матрицы. Серый чугун рекомендуется использовать преимущественно для деталей, работающих на сжатие (станины станков, поршни, цилиндры и т.д.).
При сжатии чугун претерпевает значительные деформации, и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии, в зависимости от качества чугуна и его структуры, в 3 – 5 раз больше, чем при растяжении. Графит, нарушая сплошность металлической основы, делает чугун малочувствительным к всевозможным внешним концентраторам напряжений (дефектам поверхности, надрезам, выточкам и т. д.). Вследствие этого серый чугун имеет примерно одинаковую конструктивную прочность в отливках простой формы или с ровной поверхностью, и сложной формы с надрезом или плохо обработанной поверхностью. Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного «смазывающего» действия и повышения прочности пленки смазки. Очень важно, что графит улучшает обрабатываемость резанием, делает стружку ломкой.
Маркируются серые чугуны буквами СЧ и цифрами (ГОСТ 1412 – 85), характеризующими величину временного сопротивления при испытаниях на растяжение: СЧ 30 (где 30 обозначает sв = 300 МПа).
Примерный химический состав серых чугунов: 2,9 ¸ 3,6 % С; 1,1 ¸ 3,5 % Si; 0,6 ¸ 1,2 % Mn; £ 0,3 ¸ 0,6 % P; £ 0,15 % S.
Свойства и области применения серых чугунов приведены в таблице 1.
Таблица 1 – Свойства и применение серых чугунов
Ковка чугуна
Ковкий чугун – это разновидность чугуна, полученного термической обработкой белого чугуна. Отличительной особенностью ковкого чугуна является присутствие графита в хлопьевидной форме.
Какой чугун называют ковким
Надо понимать, что ковкий чугун, это не чугун, полученный ковкой. Изделия из ковкого чугуна при высокой влажности могут деформироваться даже при комнатной температуре. Данное свойство ковкого чугуна и предопределило его название. Ковкий чугун получают литьем. Интересной и важной особенностью ковкого чугуна является отсутствие внутренних напряжений.
Виды чугунов
Напомним, что все чугуны подразделяются на следующие группы:
- белые;
- серые (ГОСТ 1412);
- ковкие (ГОСТ 1215);
- высокопрочные (ГОСт 7293 ).
В белом чугуне углерод присутствует в форме цементита. Белые чугуны обладают высокой твердостью и стойкостью к износу. По причине высокой твердости белый чугун очень трудно поддается обработке на металлорежущем оборудовании.
В сером чугуне углерод присутствует в пластинчатом виде. Серые чугуны не такие твердые, как белые. Основная сфера их применения в конструкциях, которые не испытывают ударных нагрузок.
В ковком чугуне графит присутствует в хлопьевидной форме. Из ковкого чугуна изготавливают изделия, работающие при высоких ударных и вибрационных нагрузках.
В высокопрочном чугуне графит присутствует в шаровидной форме. Высокопрочный чугун получают модифицированием его магнием, который и обеспечивает формирование углерода в виде шариков. Высокопрочные чугуны по своим свойствам близки к углеродистым сталям. Из высокопрочного чугуна изготовляют поршни, коленчатые валы, различные компоненты систем торможения.
Получение ковкого чугуна
Как уже было сказано выше, ковкий чугун получают термической обработкой белого чугуна с последующим томлением (выдержкой при определенной температуре).
Поскольку белые чугуны обладают плохими литьевыми качествами, при производстве ковких чугунов необходимо принимать меры, направленные на снижение дефектов литья. С этой целью белый чугун перегревается, а при отливке учитывается его усадка, а также изменение размеров заготовок во время томления, которое выполняется при температуре 1350-1450°С.
Процесс томления ковкого чугуна проводится в специальных цехах, где заготовки, выполненные из чугунных сплавов, размещаются в горшках, вмещающих до 300 отливок.
Максимальную прочность ковкий чугун получает, если проходит процесс отжига в горшках, выполненных из белого чугуна, легированного хромом.
Ковкий чугун производится в муфельных электропечах, которые могут в режиме томления гибко регулировать температуру, при этом продукты сгорания топлива не контактируют с горшками, с уложенными заготовками.
Марки ковкого чугуна
Ковкий чугун маркируется КЧ 45 – 6. Первое число – это прочность на растяжение, второе – это удлинение в процентах.
Основные физико-технические параметры ковкого чугунного сплава нормированы в ГОСТ 1215-79.
Конкретная марка КЧ непосредственно зависит от условий, в которых проводилось томление. После этой операции получают три класса чугуна КЧ:
- Ферритный класс содержит феррит и хлопьевидный графит:
- КЧ 30-6
- КЧ 33-8
- КЧ 35-10
- КЧ 37-12
- Перлитный класс содержит перлит и хлопьевидный графит:
- КЧ 45-7
- КЧ 50-5
- КЧ 56-4
- КЧ 60-3
- КЧ 65-3
- КЧ 70-2
- КЧ 80-1,5
- Ферритно-перлитный класс содержит феррит, перлит и хлопьевидный графит.
Структура ковкого чугуна
Компактные графитовые включения, являющиеся основной особенностью микроструктуры ковкого чугуна, определяют его высокую прочность и пластичность. Ковкий чугун с низким содержанием углерода является единственным видом чугуна, который поддается сварке. Он хорошо прессуется, расчеканивается, легко заполняя зазоры и пустоты.
Состав ковкого чугуна:
- C – 2,4-3,0%
- Si – 0,8-1,4%
- Mn – 0,3-1,0%
- P – до 0,2%
- S – до 0,1%
Пройдя процесс томления, ковкий чугун содержит аустенит и графит.
При медленном охлаждении цементит, входящий в состав перлита, разлагается, и структура приобретает вид из феррита и графита (ферритный ковкий чугун).
При быстром охлаждении получается перлитный ковкий чугун, поскольку вторая стадия разложения отсутствует.
Применение ковкого чугуна
Применение изделий из ковкого чугуна обусловлено его механическими свойствами, которые находятся между сталью и серым чугуном. С одной стороны ковкий чугун обладает высокими показателями текучести, износостойкости, хорошими антикоррозионными свойствами. С другой стороны, ковкие чугуны высокопрочны, что позволяет их использовать в производстве трубопроводной арматуры для газа и воды.
При низких температурах ковкий чугун становится достаточно хрупким и боится ударных нагрузок.
Изделия из ковкого чугуна широко применяются в машиностроении, автомобилестроении, железнодорожном транспорте.
Наибольшее применение нашли ферритные отливки, производство которых дешевле. Из ферритного ковкого чугуна изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.
Перлитный ковкий чугун используется для изготовления деталей, работающих в узлах под высокими нагрузками. Из перлитных чугунов изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.
Ковкий чугун используют для получения отливок с тонкой стенкой, размер которой может колебаться в диапазоне от 3 до 40 мм.