- Какие есть сплавы алюминия
- Алюминиевые сплавы
- Характеристики алюминиевых сплавов
- Сферы применения
- Классификация
- Деформируемые алюминиевые сплавы
- Литейные алюминиевые сплавы
- Принципы маркировки
- Cплавы алюминия: выбор и применение
- Сплавы на основе алюминия
- Термины и определения
- Легирование в алюминиевых сплавах
- Железо в алюминиевых сплавах
- Модифицирование сплавов
- Классификация алюминиевых сплавов
- Две категории: литейные и деформируемые
- Деформируемые сплавы
- Литейные сплавы
- Два механизма упрочнения
- Термически упрочняемые сплавы
- Рисунок 8 – Рейтинг прочности деформируемых алюминиевых сплавов [2] Рисунок 9 – Влияние легирующих элементов на прочность при растяжении, твердость, чувствительность к удару и пластичность [5] Выбор сплава При выборе алюминиевого сплава в качестве конструкционного материала, главным фактором является обеспечение прочности изготавливаемого из него конструкционного элемента. Однако конструкционную прочность различных типов элементов обеспечивают различные свойства одного и того же конструкционного материала. Например, прочность «толстой» колонны будет зависеть в основном от предела текучести металла, тогда как прочность «тонкой» колонны будет зависеть главным образом от модуля упругости материала. Поскольку предел текучести алюминиевых сплавов нередко сравним с пределами текучести рядовых конструкционных сталей, то алюминий мог бы вполне потягаться с ними для «толстых» колонн. С другой стороны, поскольку модуль упругости алюминия и его сплавов составляет всего лишь где-то треть от модуля упругости сталей, то алюминий вряд ли может соперничать со сталями в «тонких» колоннах. Прочность, однако, не является единственной рабочей характеристикой конструкции или изделия. Такие дополнительные факторы, как коррозионная стойкость, легкость обработки (прессуемость или свариваемость), жесткость (модуль упругости), пластическое разрушение (относительное удлинение), вес (плотность), усталостная прочность, а также стоимость, должны в той или иной мере учитываться при выборе нужного конструкционного материала. Экономика алюминиевой конструкции Часто стоимость материала является критическим фактором. Однако сравнение алюминиевых сплавов и сталей на основе стоимости единицы массы или объема может ввести в заблуждение, так как они имеют различные прочности, плотности и другие свойства. Если бы стоимость материала была единственным фактором и углеродистые стали могли применяться без защитного антикоррозионного покрытия, то всегда и везде применялись бы только они. Однако, при выборе материала в рассмотрение принимаются и другие факторы, такие как стоимость эксплуатации и технического обслуживания в течение всего срока службы конструкции. Кроме того, в некоторых специфических условиях «правило» о том, что алюминиевый элемент в два раза легче стального не всегда справедливо. Например, алюминиевый компонент может весить и значительно меньше, если толщину стального элемента нужно увеличивать с учетом ее возможного уменьшения от воздействия слишком агрессивной коррозии в течение всего срока службы. Если требуются профили со сложными поперечными сечениями, как, например, в ограждающих фасадных конструкциях, то в таких случаях, стоимость стального элемента намного больше, чем стоимость его материала. Дело в том, что для изготовления этого элемента из стальной заготовки ее надо механически обрабатывать, подвергать холодной штамповке или гибке, а, может быть, и применять сварку. В то же время стоимость изготовления алюминиевого профиля составляет только малую долю стоимости «сырого» алюминия. Из-за высокой стоимости нержавеющих сталей они применяются только, если вес элемента или конструкции не имеет значения, а важны внешний вид и свариваемость. Обычно, когда нержавеющая сталь применяется вместо алюминия, то причина часто только одна – ограничения алюминиевых сплавов по сварке. Алюминиевые сплавы по Еврокоду 9 Алюминиевые сплавы предлагают инженерам-конструкторам широкий выбор материалов. Каждый сплав имеет свои особенные характеристики, которые служат для обеспечения заданных свойств. Когда коррозионная стойкость, высокое отношение прочности к весу и легкость изготовления являются существенными конструкционными параметрами, тогда алюминиевые сплавы заслуживают серьезного рассмотрения. В таблицах 1 и 2 представлены деформируемые алюминиевые сплавы, которые Еврокод 9 рекомендует и разрешает для применения в зданиях и сооружениях (см. подробнее здесь). Таблица 1 – Термически неупрочняемые алюминиевые сплавы по Еврокоду 9 Таблица 2 – Термически неупрочняемые алюминиевые сплавы по Еврокоду 9 1. Guidance GAG Guidance Document 001 Terms and Definitions Edition 2009-01 March 2009 2. The welding of aluminium and its alloys / Gene Mathers – Woodhead Publishing Ltd, 2002 3. Aluminum and Aluminium Alloys / ed. Davis – ASM International, 1996 4. Aluminum and Aluminum Alloys – Subject Guide – ASM International, 2015 5. TALAT 1501 Виды и свойства алюминиевых сплавов Алюминиевые сплавы используются для изготовления разных предметов. Чистый металл не имеет достаточной механической прочности, устойчивости к коррозии. Поэтому металл непригоден для решения простейших бытовых задач. Комбинация с легирующими элементами позволяет получить вещество с другими свойствами. Используются технологии, которые помогают повысить прочность, твердость, устойчивость к высокой температуре и коррозии. Некоторые добавки помогают уменьшить электропроводность, повысить плотность. Марганец и магний не влияют на эти характеристики. Физические параметры алюминиевых сплавов Перечислим физические свойства нескольких сплавов на основе алюминия: Соединение АД1 – технически чистое вещество, в котором присутствует 0,7% примесей. Добавки увеличивают устойчивость к воздействию внешних факторов, уменьшают пластичность и электропроводность вещества. Технический алюминий устойчив к химическому воздействию, превосходит по этим параметрам другие вещества. На поверхности материала присутствует тонкая оксидная прослойка. Низкое содержание примесей положительно воздействует на устойчивость к коррозии. Магний и марганец не изменяют эти свойства. Правка методом растяжения – заключительная процедура обработки детали из вещества марки АД1. Для этого используются роликоправильные машины. Марганец и магний помогают создавать крепкие детали, но уменьшает их пластичность. Марка АМц устойчива к коррозии. Детали прекрасно поддаются обработке газовой, аргонной, атомно-водородной и контактной сваркой. Материал прекрасно деформируется при любой температуре. После термообработки прочность не повышается. Изготавливаются детали в отожженном или горячем прессованном виде. AMr3, Amr2. Такие соединения не ржавеют, хорошо подвергаются обработке точечной, газовой, роликовой сваркой. После горячей деформации охладить сплав алюминия можно на воздухе. После термообработки характеристики прочности не повышаются. При изготовлении деталей используют два режима термообработки: низкий 273-350 градусов и высокий 360-420 градусов. АД31 отличается пластичностью, хорошей устойчивостью к окислению. После сварки материал не становится более подверженным ржавчине. Прочность повышается после термообработки. Виды алюминиевых сплавов Алюминий, а также сплавы на его основе создаются из металлической руды, которая делится на несколько видов: Первичная. Техническая. Литейная. Деформируемая. Антифрикционная. По методу использования вещества делятся на деформируемые и литейные. Деформированные отличаются повышенной пластичностью после термообработки. Литейные могут хорошо заполнять формы для отливки. Пластичные вещества отличаются устойчивостью к коррозии, хорошей свариваемостью. Прочность сплава из алюминия зависит от количества используемой меди. Если добавляется 6% вещества для легирования, устойчивость к механическим воздействиям увеличиваются приблизительно на 30 МПа, текучесть повышается на 20 МПа. Показатель относительного удлинения немного снижается в таких условиях, но не превышает пределы 35%. Если количество магния превышает 6%, структура материала становится нестабильной, уменьшается устойчивость к коррозии. Чтобы улучшить характеристики, в соединение добавляют такие элементы: Добавление меди и железа плохо сказываются на состоянии алюминиево-магниевых соединений. Показатель свариваемости и стойкости к воздействию ржавчины ухудшается. Добавление марганца позволяет повышать пластичность. Для создания мелкозернистой структуры проводится легирование с помощью титана. Чтобы состояние вещества было стабильным, добавляется марганец. Кремний и железо являются главными примесями марганцевых соединений. Добавки из алюминия, меди, кремния применяются при производстве втулочных подшипников, блоков цилиндров. Из-за твердой поверхности приработка требует продолжительных усилий. После легирования медью повышается термостойкость. Даже низкоуглеродистая сталь не так устойчива к температурному воздействию. Такой продукт неустойчив к воздействию коррозии, поэтому требует обработки и полимеризации. Алюминиево-медное соединение модифицируется с помощью таких материалов: Магний сильно повышает прочность металла, придаёт текучесть. Жаропрочность соединения увеличивается после добавления никеля и железа. Стимулируется процесс искусственного старения. Добавление кремния помогает получить вещество, которое называется силумином. Качественные характеристики соединения повышаются небольшим количеством натрия и никеля. Такие материалы используются для декоративного литья, производства корпусов механизмов и деталей бытовой техники. Они применяются в таких отраслях, благодаря хорошим литейным характеристикам. Алюминий, магний и цинк удобно обрабатывать, такой материал отличается устойчивостью к механическим воздействиям. Эти характеристики обеспечивает хорошая растворимость цинка и магния. Под воздействием холода такое свойство заметно снижается. Материал неустойчив к коррозии, поэтому требуется дополнительное легирование с помощью меди. Марки алюминиевых сплавов Различают три вида маркировки: Буквенно-цифровая. Обычная цифровая. Международный вариант. Основной материал в сплаве на основе алюминия отмечается первой цифрой в соответствии с ГОСТом. Второе числовое обозначение определяет легирующую систему, которая использовалась. Дополнительные символы указывают на разновидность модификации. Что такое алюминиевый сплав? Материал добывают из бокситовой руды. Залежи такой породы есть в России, Америке, Франции и других странах. Алюминий и некоторые его сплавы отличаются мягкостью, устойчивостью к коррозии. Температура плавления составляет примерно 700 градусов. Плотность 2,7 г на кв. см. Вещество прекрасно проводит электричество и тепло, взаимодействует с кислородом. Показатель упругости – 7000 Мпа, прочность – 150 МПа. При использовании некоторых добавок понижается устойчивость к коррозии. Это происходит по причине повреждения оксидной пленки. Алюминий и сплавы Алюминий используется для изготовления различных деталей и сплавов на его основе. В процессе изучения и применения этого металла, была разработана технология его обработки. Для придания материалу требуемых свойств, используется легирование. Этот процесс подразумевает, что в расплавленном состоянии, алюминий смешивается с расплавами дополнительных элементов. Такой процесс позволяет повышать качество металлургической продукции. В зависимости от выбранных пропорций и дополняющих элементов, изменяются химические, механические и физические свойства металла. На сегодняшний день чистый алюминий практические не используется в промышленности, по причине низкого показателя прочности. Сплавы же получили широкое применение и постоянно совершенствуются пропорции и технологии их обработки. Сварка алюминия выполняется точечной или аргонодуговой установкой, также используется электродуговая сварка. Основные свойства алюминия Главными факторами, определяющими обширность использования любого материла, являются его свойства и показатели. На сегодняшний день Сплавы на основе алюминия применяются практически во всех сферах деятельности. Простой причиной для такого распространения служат основные свойства алюминия, которые приведены в списке. плотность — 2,7 г/см³ температура плавления технического алюминия — 658 °C; температура плавления чистого алюминия — 660 °C; удельная теплота плавления— 390 кДж/кг; температура кипения — 2500 °C; удельная теплота испарения— 10,53 МДж/кг; удельная теплоемкость— 880 Дж/кг·K; временное сопротивление литого алюминия — 10—12 кг/мм², временное сопротивление деформируемого — 18—25 кг/мм²,временное сопротивление сплавов — 38—42 кг/мм²; Твёрдость по Бринеллю — 24…32 кгс/мм²; пластичность у технического — 35 %; пластичность у чистого — 50 %; Модуль Юнга— 70 ГПа; Алюминий обладает высокой электропроводностью (37·10 6 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражающей способностью; Слабый парамагнетик; Температурный коэффициент линейного расширения 24,58·10 −6 К −1 (20…200 °C); Удельное сопротивление 0,0262..0,0295 Ом·мм²/м; Температурный коэффициент электрического сопротивления 4,3·10 −3 K −1 . Алюминий переходит в сверхпроводящее состояние при температуре 1,2 кельвина. Важным свойством, которым отличаются сплавы на основе алюминия — это высокая пластичность. Легко может раскатываться в фольгу, что особенно важно для использования в электронике и электротехнике. Материал легко может обрабатываться при небольших механических усилиях. Невысокая температура плавления позволяет переплавлять и изготавливать детали из сплавов алюминия с минимальными энергетическими затратами, что удешевляет производство и саму продукцию. Марки алюминия по ГОСТУ Алюминий и его сплавы, равно как и другие металлы, маркируется по установленным стандартам. Так, существуют марки алюминия по ГОСТУ, которые приведены в списках. Деформируемые алюминиевые сплавы: Упрочняемые термической обработкой: Дюраль Д1, Д16, Д20*, сплавы алюминия меди и марганца [Al-Cu-Mg]; Сплав авиаль (АВ); Высокопрочный сплав (В95); Сплавы для ковки и штамповки (АК6, АК8, АК4-1 [жаропрочный]). Не упрочняемые термической обработкой: Сплавы алюминия с марганцем (АМц); Сплавы алюминия с магнием (АМг2, АМг3, АМг5, АМг6). Литейные алюминиевые сплавы для фасонного литья: Сплавы алюминия с кремнием (силумин /) Al-Si (АЛ2, АЛ4, АЛ9) — высокая плотность отливок, легко обрабатываются резанием, отличаются высокими линейными показателями; Сплавы алюминия с медью Al-Cu (АЛ7, АЛ19) — высокие механические свойства после термической обработки, легко обрабатываются резанием; Сплавы алюминия с магнием Al-Mg (АЛ8, АЛ27) — повышенная стойкость к коррозии, повышенные механические свойства, легко обрабатывается резанием; Жаропрочные алюминиевые сплавы (АЛ1, АЛ21, АЛ33) — легко обрабатываются резанием, повышенная жаропрочность. Классификация с точки зрения удобства механической обработки (Мягкие и пластичные, неудобные для механической обработки резанием): Отожженные — Д16, АВ; Не упрочняемые термической обработкой — АМц, АМг2, АМг3, АМг5, АМг6. Относительно прочные и твердые сплавы алюминия, которые достаточно легко обрабатывать механическим путем: Закаленные и искусственно состаренные: Д16Т, Д16Н, АВТ; Ковочные: АК6, АК8, АК4-1; Литейные: АЛ2, АЛ4, АЛ9, АЛ8, АЛ27, АЛ1, АЛ21, АЛ33. post_views_count: 706 vote-total: 3 vote-rating: 15 —> Оставьте свой комментарий Отменить ответ Цветные металлы — это большая часть всех имеющихся металлов в… Марки алюминия: виды, свойства и области применения Сегодня алюминий используется практически во всех отраслях промышленности, начиная с производства пищевой посуды и заканчивая созданием фюзеляжей космических кораблей. Для тех или иных производственных процессов подходят только определенные марки алюминия, которые обладают определенными физико-химическими свойствами. Виды алюминия Все марки металла описаны и внесены в единую систему признанных национальных и международных стандартов: Европейских EN, Американских ASTM и международных ISO. В нашей стране марки алюминия определены ГОСТом 11069 и 4784. Во всех документах алюминий и его сплавы рассматриваются отдельно. При этом сам металл подразделяется именно на марки, а сплавы не имеют конкретно определенных знаков. В соответствии с национальными и международными стандартами, следует выделить два вида микроструктуры нелегированного алюминия: высокой чистоты с процентным содержанием более 99,95%; технической чистоты, содержащей около 1% примесей и добавок. В качестве примесей чаще всего рассматривают соединения железа и кремния. В международном стандарте ISO для алюминия и его сплавов выделена отдельная серия. Марки алюминия Технический вид материала делится на определенные марки, которые закреплены за соответствующими стандартами, например АД0 по ГОСТ 4784-97. При этом в классификацию входит и металл высокой частоты, чтобы не создавать путаницу. Данная спецификация содержит следующие марки: Первичный (А5, А95, А7Е). Технический (АД1, АД000, АДС). Деформируемый (АМг2, Д1). Литейный (ВАЛ10М, АК12пч). Для раскисления стали (АВ86, АВ97Ф). Кроме того, выделяют и категории лигатуры – соединения алюминия, которые используются для создания сплавов из золота, серебра, платины и других драгоценных металлов. Первичный алюминий Первичный алюминий (марка А5) – типичный пример данной группы. Его получают путем обогащения глинозема. В природе металл в чистом виде не встречается ввиду его высокой химической активности. Соединяясь с другими элементами, он образует бокситы, нефелины и алуниты. Впоследствии из этих руд получают глинозем, а из него с помощью сложных химико-физических процессов — чистый алюминий. ГОСТ 11069 устанавливает требования к маркам первичного алюминия, которые следует отметить путем нанесения вертикальных и горизонтальных полос несмываемой краской различных цветов. Данный материал нашел широкое применение в передовых отраслях промышленности, главным образом там, где от сырья требуются высокие технические характеристики. Технический алюминий Техническим алюминием называют материал с процентным содержанием инородных примесей менее 1%. Очень часто его также называют нелегированным. Технические марки алюминия по ГОСТу 4784-97 характеризуются очень низкой прочностью, но высокой антикоррозионной стойкостью. Благодаря отсутствию в составе легирующих частиц на поверхности металла быстро образуется защитная оксидная пленка, которая отличается устойчивостью. Деформируемый алюминий К деформируемому алюминию относят материал, который подвергают горячей и холодной обработке давлением: прокатке, прессованию, волочению и другим видам. В результате пластических деформаций из него получают полуфабрикаты различного продольного сечения: алюминиевый пруток, лист, ленту, плиту, профили и другие. Область применения деформируемого алюминия, как и та, где применяется алюминиевый пруток, достаточно обширна. Он используется как в областях, требующих высоких технических характеристик от материалов — в корабле- и самолетостроении, так и на строительных площадках в качестве сплава для сварки. Литейный алюминий Литейные марки алюминия используются для производства фасонных изделий. Их главной особенностью является сочетание высокой удельной прочности и низкой плотности, что позволяет отливать изделия сложных форм без образования трещин. Высокогерметичные материалы (АЛ2, АЛ9, АЛ4М). Материалы с высокой прочностью и жароустойчивостью (АЛ 19, АЛ5, АЛ33). Вещества с высокой антикоррозионной устойчивостью. Очень часто эксплуатационные характеристики изделий из литейного алюминия повышают различными видами термической обработки. Алюминий для раскисления На качество изготавливаемых изделий оказывает влияние и то, какие имеет алюминий физические свойства. И применение низкосортных сортов материала не ограничивается созданием полуфабрикатов. Очень часто он используется для раскисления стали – удаления из расплавленного железа кислорода, который растворен в нем и повышает тем самым механические свойства металла. Для проведения данного процесса чаще всего применяются марки АВ86 и АВ97Ф.
- Выбор сплава
- Экономика алюминиевой конструкции
- Алюминиевые сплавы по Еврокоду 9
- Виды и свойства алюминиевых сплавов
- Физические параметры алюминиевых сплавов
- Виды алюминиевых сплавов
- Марки алюминиевых сплавов
- Что такое алюминиевый сплав?
- Алюминий и сплавы
- Основные свойства алюминия
- Марки алюминия по ГОСТУ
- Оставьте свой комментарий Отменить ответ
- Марки алюминия: виды, свойства и области применения
- Виды алюминия
- Марки алюминия
- Первичный алюминий
- Технический алюминий
- Деформируемый алюминий
- Литейный алюминий
- Алюминий для раскисления
Какие есть сплавы алюминия
Алюминиевые сплавы
Среди всех сплавов своими эксплуатационными качествами выделяются алюминиевые. Их применяют при производстве летательных аппаратов, возведении домов, выпуске наземного транспорта и морских судов. При этом выделяют довольно много недостатков, которыми обладают алюминиевые сплавы: мягкость, не очень высокая прочный, относительно невысокая устойчивость к воздействию повышенной влажности. Однако всего несколько основных положительных качеств определяет широкое распространение алюминиевых сплавов в самых различных областях промышленности. Рассмотрим все особенности данного материала подробнее.
Характеристики алюминиевых сплавов
Сплавы на основе алюминия могут обладать самыми различными характеристиками, так как при их получении проводится смешивание различных примесей. Именно поэтому рассматривая механические свойства алюминиевых сплавов следует уделить внимание тому, какие именно элементы входят в состав.
Для начала отметим классификацию материалов, которые получаются при соединении меди и алюминия. Они делятся на три основные группы:
- Действующие элементы медь и алюминий.
- Действующие элементы медь, магний и алюминий.
- Сочетание меди, алюминия и магния с добавлением легирующих элементов (в основном марганца).
Последняя группа сегодня получила довольно большое распространение, так как температура плавления алюминиевых сплавов, входящих в нее, довольно высока. Сплавы последней группы называют дюралюминием.
Рассматривая дюралюминий уделим внимание нижеприведенным моментам:
- В состав данного сплава входят железо и кремний. В большинстве случаев подобные легирующие элементы воспринимаются как вещества, ухудшающие эксплуатационные качества. В данном случае железо способствует повышению жаростойкости, а кремний позволяет с высокой эффективностью провести старение.
- Входящие в состав магний и марганец повышают прочность. За счет их включения в состав стало возможно использовать дюралюминий при производстве обшивочных листов для высокоскоростных поездов и летательных аппаратов или самолетов.
Часто встречается сплав, представляющий собой сочетание алюминия и магния. Технические характеристики подобного алюминиевого сплава зависят от того, сколько магния в составе.
Среди основных особенностей можно отметить нижеприведенные моменты:
- С увеличением концентрации магния повышается прочность, но уменьшается коррозионная стойкость.
- Прирост магния на 1% приводит к повышению прочности примерно на 30 000 Па.
- В большинстве сплавов не более 6% магния. Это связано с тем, что слишком большая концентрация станет причиной покрытия всей поверхности коррозией. Также большая концентрация марганца становится причиной неоднородности структуры, неравномерная нагрузка может стать причиной появления трещины или другой деформации.
Сочетание алюминия с марганцем практически не подвергают термической обработке. Это связано с тем, что даже при соблюдении условий проведения закалки существенно изменить эксплуатационные качества сплава не получится. Плотность алюминиевого сплава может колебаться в достаточно большом диапазоне: от 2 до 4 грамм на кубический сантиметр.
Рассматривая слав, прочность которого имеет рекордные показатели, следует уделить внимание сплаву алюминия с цинком и магнием. При применении современных технологий производства можно добиться качеств, которые будут характерны для титана. Среди особенностей подобного сплава отметим:
- Термическая обработка становится причиной растворения цинка, за счет чего предел прочности алюминиевого сплава возрастает в несколько раз.
- Применять подобный материал в электрической промышленности нельзя, так как прохождение электричества становится причиной существенного снижения коррозионной стойкости.
- Коррозионная стойкость в некоторых случаях повышается путем добавления меди, но все же она становится низкой.
В литейной промышленности весьма большое распространение получили алюминиевые сплавы, которые в своем составе имеют кремний. Тот момент, что при термической обработке кремний отлично растворяется в алюминии, позволяет использовать металл при фасонном или формовочном литье. Получаемые изделия хорошо обрабатываются резанием, а также обладают повышенной плотностью.
Очень редко встречаются смеси алюминия и железа, а также никеля. Это связано с тем, что подобные элементы зачастую применяются исключительно как легирующие вещества.
Примером можно назвать то, что железо добавляется в состав для упрощения процесса отделения детали от формы. В состав могут добавляться титан, который существенно повышает показатель прочности.
Подводя итоги по характеристикам алюминиевых сплавов можно отметить нижеприведенные моменты:
- Предел текучести может варьироваться в достаточно большом диапазоне.
- Температура плавления алюминия может изменяться в зависимости от того, какие применялись легирующие вещества.
- Прочность материала можно существенно повысить.
- Некоторые легирующие элементы снижают коррозионную стойкость, улучшая другие эксплуатационные качества. Именно поэтому проводится покрытие поверхности защитными веществами.
Из-за легкости и прочности, а также относительно высокой коррозионной стойкости алюминиевые сплавы получили достаточно широкое применение. Альтернативных материалов, которые обладают подобными свойствами и низкой стоимостью, практически нет.
Сферы применения
Алюминий и алюминиевые сплавы получили самое широкое применение, что связано с основными эксплуатационными качествами. Их применение во многом зависит от состава. Примером назовем следующие моменты:
- Изначально сплавы стали применяться при изготовлении элементов дирижаблей или самолетов, что связано с легкостью и прочностью.
- Сегодня за счет того, что состав определяет плавление при достаточно высоких температурах, сплавы стали применять при изготовлении скоростных поездов. Для снижения их веса применяется алюминиевые сплавы. При движении на большой скорости поверхность нагревается, но при этом не деформируется.
- Машиностроительная, пищевая и легкая промышленность, сфера производства бытовой техничек и электроники – применение алюминиевого сплава весьма обширно.
Столь обширная сфера применения определена также тем, что процесс производства сплава весьма прост, получаемый материал не имеет высокой стоимости, а эксплуатационные качества могут быть изменены путем добавления различных легирующих элементов.
Классификация
Рассматривая виды алюминиевых сплавов следует отметить, что они могут классифицироваться по достаточно большому количеству признаков. Классификация алюминия его сплавов по типу вспомогательных элементов подразумевает выделение следующих основных групп:
- С добавлением присадок. В качестве присадки применяется просто огромное количество различных веществ, к примеру, магний, цинк, хром, кремний и другие.
- С добавлением интреметаллидов. Эту группу можно охарактеризовать добавлением соединением нескольких металлов, к примеру, меди и магния, лития и магния.
Специальные алюминиевые сплавы могут состоять из огромного количества элементов. Их добавление проводится для придания материалу особых эксплуатационных качеств.
В зависимости от выбранного метода металлообработки можно выделить:
- Деформируемые сплавы – твердые, из-за повышенной пластичности могут подвергаться обработки путем прессования или ковки. Для повышения эксплуатационных качеств может проводится дополнительная обработка.
- Литейные поступают на производство в жидком виде. Подобный материал легко поддается резке после отвердевания. Пример применения литейного сплава — изготовление корпусных деталей различной формы.
По степени прочности можно выделить несколько групп:
Кроме этого в отдельную группу принято выделять дуралюмины, которые обладают особыми эксплуатационными качествами.
Легкий алюминиевый сплав может иметь достаточно большое количество различных примесей. При этом химический состав отражается на маркировке.
Деформируемые алюминиевые сплавы
Довольно большое распространение деформируемых алюминиевых сплавов можно связать с тем, что при их применении процесс производства различных изделий существенно упрощается. Область применения следующая:
Деформируемые алюминиевые сплавы
В результате получаются различные заготовки или уже практически готовые детали с исключительными эксплуатационными качествами. После получения требующейся формы проводится отжиг, закалка или старение, которые позволяют существенно повысить показатель прочности. Данный типа алюминия применяют для получения труб, листа или профиля.
Литейные алюминиевые сплавы
Технологии получения деталей и заготовок путем литья применяются на протяжении многих лет. Они хороши тем, что позволяют получать самые различные формы, которые могут иметь сложные поверхности. Сплавы на основе алюминия могут переходить в текучее состояние при более низких температурах, чем другие металлы. Именно поэтому процесс изготовления различных деталей существенно упрощается.
Среди других особенностей материала данной группы отметим:
- После формирования устойчивой кристаллической решетки полученную поверхность достаточно легко подвергать механической обработке.
- Получаемые заготовки рассматриваемым методом также хорошо поддаются обработке методом давления.
Литейные алюминиевые сплавы получили весьма широкое применение в различных отраслях промышленности, особенно тех, в которых нужно получать сложные корпусные детали. За счет литья по форме существенно упрощается дальнейшая механическая обработка.
Литейные алюминиевые сплавы
Основные требования, предъявляемые к литейным алюминиевым сплавом – сочетание хороших литейных свойств и оптимальных физико-механических качеств. Данную группу можно разделить на:
- Конструкционные герметичные. Этот тип материала характеризуется высокими литейными качествами, а также удовлетворительной коррозионной стойкостью и механической обрабатываемостью. Как правило, получаемые заготовки и изделия в дальнейшем не подвергаются термической обработке для повышения эксплуатационных качеств. Для изготовления средних и крупных деталей, которые зачастую представлены корпусами, достаточно часто проводится легирование состава.
- Высокопрочные и жаропрочные. Довольно часто подобный состав дополнительно легируется титаном, за счет чего обеспечиваются высокие эксплуатационные качества. Жаропрочность выдерживается в пределах 350 градусов Цельсия. Для упрочнения состава проводится закалка на протяжении достаточно длительного периода. Довольно часто подобный сплав применяется при получении крупногабаритных заготовок самого различного предназначения.
- Коррозионностойкие составы характеризуются тем, что обладают высокой коррозионной стойкостью при эксплуатации в самых различных агрессивных средах. Структура хорошо подается обработке методом резания и сваривания. Однако стоит учитывать относительно невысокие литейные свойства.
Последняя разновидность алюминиевых сплавов достаточно часто применяется при изготовлении деталей, которые будут эксплуатироваться при воздействии морской воды.
Принципы маркировки
Довольно большое количество сложностей возникает с определением марки материала. Маркировка алюминиевых сплавов проводится так, чтобы их можно было просто определить. Как правило, каждому составу присваивается свой номер, который может состоять из цифр и букв.
Среди особенностей маркировки можно отметить нижеприведенные моменты:
- Начинается маркировка с одной или нескольких букв, которые указывают на состав.
- Кроме этого марки имеют цифровой порядковый номер.
- В конце обозначения также может указываться цифра, которая указывает на особенности проведенной термической или иной обработки.
Разберем применяемые правила обозначений на конкретном примере сплава Д17П. Первая буква указывает на то, какой именно состав. В данном случае это дюралюминий. Все дюралюминии имеют определенный химический состав, однако концентрация основных элементов может существенно отличаться. Поэтому число 17 – порядковый номер, указывающий на конкретный материал (то есть с определенными качествами). В конце есть буква, которая применяется для обозначения полунагартованного сплава. Данный метод обработки предусматривает воздействие давления без предварительного нагрева сплава, а значит прочность будет вполовину меньше максимального значения.
В заключение отметим, что каждый состав обладает своими особыми физико-механическими качествами. Данные свойства определяют то, куда именно будет направлен материал для изготовления деталей или дальнейшей обработки. Наиболее важными свойствами принято считать пластичность, теплопроводность, электрическую проводимость и другие. Немаловажным фактором также является то, насколько качественно было проведено изготовление материала. Применение современных технологий позволяет с высокой точностью контролировать концентрацию тех или иных элементов, исключает вероятность появления различных дефектов. В большинстве случаев производство проводится в соответствии с ГОСТ и другими мировыми стандартами.
Cплавы алюминия: выбор и применение
Сплавы на основе алюминия
Термины и определения
Алюминиевый сплав – сплав на основе алюминия – это алюминий, который [1]:
- содержит один или более легирующих элементов, а также некоторые примеси;
- алюминий преобладает по массе по каждому из других химических элементов;
- содержание алюминия не превышает 99,00 %.
Легирующий элемент – это металлический или неметаллический элемент, который контролируется в определенных верхних и нижних пределах для целей придания алюминиевому сплаву определенных специальных свойств [1].
Примесь – металлический или неметаллический элемент, который присутствует в сплаве, минимальное содержание которого не контролируется. В алюминиевых сплавах, как правило, контролируется максимальная концентрация примеси [1].
Легирование в алюминиевых сплавах
Наиболее важными легирующими элементами, которые применяют для превращения алюминия в сплавы с особыми свойствами – и деформируемые, и литейные (конечно, в разных количествах) – являются:
Влияние, например, содержания меди в алюминиевом сплаве на его механические свойства показано на рисунке 1.
Рисунок 1- Влияние легирования алюминиевого сплава медью на механические свойства [3]
Железо в алюминиевых сплавах
Деформируемые алюминиевые сплавы содержат примерно 0,1 – 0,4 % (по массе) железа (Fe). Железо обычно рассматривается как нежелательная примесь. Его содержание зависит от качества исходной руды (бокситов) и технологии электролитического восстановления. Иногда легирование железом применяют для получения особых свойств материала, например, для изготовления алюминиевой фольги.
Модифицирование сплавов
В комбинации с основными легирующими элементами часто применяют другие легирующие элементы: висмут (Bi), бор (B), хром (Cr), свинец (Pb), никель (Ni), титан (Ti) и цирконий (Zr). Эти элементы обычно применяют в небольших количествах (до 0,1 % по массе, хотя B, Pb и Cr могут составлять до 0,5 %), чтобы придать им особые свойства, модифицировать сплавы для специальных целей, таких как литейные качества, обрабатываемость, теплостойкость, коррозионная стойкость, прочность и т.п.
Классификация алюминиевых сплавов
Классификацию алюминиевых сплавов – сплавов алюминия – производят по различным критериям, в том числе:
- по методу обработки – литейные и деформируемые
- по механизму упрочнения – термически упрочняемые и деформационно упрочняемые
- по основным легирующим элементам
Две категории: литейные и деформируемые
Две категории алюминиевых сплавов
Литейный алюминиевый сплав – сплав алюминия, который предназначен в первую очередь для производства отливок.
Деформируемый алюминиевый сплав – сплав алюминия, который предназначен в первую очередь для производства алюминиевых изделий горячей и/или холодной обработкой давлением.
Деформируемые сплавы
Деформируемые алюминиевые сплавы сначала разливают в слитки (круглые или прямоугольные), а потом обрабатывают по различным технологиям обработки давлением – горячей и холодной – до придания им нужной формы:
- прокаткой – для получения листов и фольги;
- прессованием – для получения профилей, труб и прутков;
- формовкой – для получения более сложных форм из катанных или прессованных полуфабрикатов;
- ковкой для получения сложных форм с повышенными механическими свойствами,
а также: - волочением, штамповкой, высадкой, вытяжкой, раскаткой, раздачей, гибкой и т. п.
Популярные деформируемые алюминиевые сплавы серии 6ххх, которые применяют для производства прессованных алюминиевых профилей, представлены ниже на рисунке 7.
Рисунок 7 – Основные алюминиевые сплавы серии 6ххх
Литейные сплавы
Литейные алюминиевые сплавы в расплавленном состоянии разливают непосредственно в их конечную форму одним из различных методов, таких как, литье в песчаные формы, литье в кокили или литье под давлением. При литье применяют сложные литейные формы. Эти сплавы часто имеют высокое содержание кремния для улучшения их литейных свойств.
У этих двух категорий алюминиевых сплавов классификация по легирующим сплавам различная: в целом в них добавляются одни и те же легирующие элементы, но в разных количествах.
Прочность и другие механические свойства алюминиевых сплавов, как деформированных, так и литейных, определяются в основном их химическим составом, т. е. содержанием в алюминии легирующих элементов, а также вредных примесей. Однако возможно изменение этих свойств для достижения их оптимального сочетания путем дополнительной обработки сплавов – термической или деформационной, или и той, и другой. В результате этого сплав изменяет свои первоначальные механические свойства и получает свое окончательное состояние, в котором и поставляется заказчику. Упрочняющую термическую обработку применяют как к литейным, так и к деформированным сплавам, Они в этом случае называются сплавами, упрочняемыми термической обработкой.
Два механизма упрочнения
Два класса алюминиевых сплавов:
- термически упрочняемые
- деформационно упрочняемые (нагартовываемые)
Термически упрочняемые сплавы
Термически упрочняемый сплав – сплав, который может быть упрочнен соответствующей термической обработкой (рисунки 2, 3 и 4).
Рисунок 2 – Закалка и упрочнение старением алюминиевых сплавов [2]
Рисунок 3 – Типичное термическое упрочнение старением [4]
Рисунок 8 – Рейтинг прочности деформируемых алюминиевых сплавов [2]
Рисунок 9 – Влияние легирующих элементов на прочность при растяжении, твердость, чувствительность к удару и пластичность [5]
Выбор сплава
При выборе алюминиевого сплава в качестве конструкционного материала, главным фактором является обеспечение прочности изготавливаемого из него конструкционного элемента. Однако конструкционную прочность различных типов элементов обеспечивают различные свойства одного и того же конструкционного материала.
Например, прочность «толстой» колонны будет зависеть в основном от предела текучести металла, тогда как прочность «тонкой» колонны будет зависеть главным образом от модуля упругости материала. Поскольку предел текучести алюминиевых сплавов нередко сравним с пределами текучести рядовых конструкционных сталей, то алюминий мог бы вполне потягаться с ними для «толстых» колонн. С другой стороны, поскольку модуль упругости алюминия и его сплавов составляет всего лишь где-то треть от модуля упругости сталей, то алюминий вряд ли может соперничать со сталями в «тонких» колоннах.
Прочность, однако, не является единственной рабочей характеристикой конструкции или изделия. Такие дополнительные факторы, как коррозионная стойкость, легкость обработки (прессуемость или свариваемость), жесткость (модуль упругости), пластическое разрушение (относительное удлинение), вес (плотность), усталостная прочность, а также стоимость, должны в той или иной мере учитываться при выборе нужного конструкционного материала.
Экономика алюминиевой конструкции
Часто стоимость материала является критическим фактором. Однако сравнение алюминиевых сплавов и сталей на основе стоимости единицы массы или объема может ввести в заблуждение, так как они имеют различные прочности, плотности и другие свойства.
Если бы стоимость материала была единственным фактором и углеродистые стали могли применяться без защитного антикоррозионного покрытия, то всегда и везде применялись бы только они. Однако, при выборе материала в рассмотрение принимаются и другие факторы, такие как стоимость эксплуатации и технического обслуживания в течение всего срока службы конструкции. Кроме того, в некоторых специфических условиях «правило» о том, что алюминиевый элемент в два раза легче стального не всегда справедливо. Например, алюминиевый компонент может весить и значительно меньше, если толщину стального элемента нужно увеличивать с учетом ее возможного уменьшения от воздействия слишком агрессивной коррозии в течение всего срока службы.
Если требуются профили со сложными поперечными сечениями, как, например, в ограждающих фасадных конструкциях, то в таких случаях, стоимость стального элемента намного больше, чем стоимость его материала. Дело в том, что для изготовления этого элемента из стальной заготовки ее надо механически обрабатывать, подвергать холодной штамповке или гибке, а, может быть, и применять сварку. В то же время стоимость изготовления алюминиевого профиля составляет только малую долю стоимости «сырого» алюминия.
Из-за высокой стоимости нержавеющих сталей они применяются только, если вес элемента или конструкции не имеет значения, а важны внешний вид и свариваемость. Обычно, когда нержавеющая сталь применяется вместо алюминия, то причина часто только одна – ограничения алюминиевых сплавов по сварке.
Алюминиевые сплавы по Еврокоду 9
Алюминиевые сплавы предлагают инженерам-конструкторам широкий выбор материалов. Каждый сплав имеет свои особенные характеристики, которые служат для обеспечения заданных свойств. Когда коррозионная стойкость, высокое отношение прочности к весу и легкость изготовления являются существенными конструкционными параметрами, тогда алюминиевые сплавы заслуживают серьезного рассмотрения.
В таблицах 1 и 2 представлены деформируемые алюминиевые сплавы, которые Еврокод 9 рекомендует и разрешает для применения в зданиях и сооружениях (см. подробнее здесь).
Таблица 1 – Термически неупрочняемые алюминиевые сплавы по Еврокоду 9
Таблица 2 – Термически неупрочняемые алюминиевые сплавы по Еврокоду 9
1. Guidance GAG Guidance Document 001 Terms and Definitions Edition 2009-01 March 2009
2. The welding of aluminium and its alloys / Gene Mathers – Woodhead Publishing Ltd, 2002
3. Aluminum and Aluminium Alloys / ed. Davis – ASM International, 1996
4. Aluminum and Aluminum Alloys – Subject Guide – ASM International, 2015
5. TALAT 1501
Виды и свойства алюминиевых сплавов
Алюминиевые сплавы используются для изготовления разных предметов. Чистый металл не имеет достаточной механической прочности, устойчивости к коррозии. Поэтому металл непригоден для решения простейших бытовых задач. Комбинация с легирующими элементами позволяет получить вещество с другими свойствами.
Используются технологии, которые помогают повысить прочность, твердость, устойчивость к высокой температуре и коррозии. Некоторые добавки помогают уменьшить электропроводность, повысить плотность. Марганец и магний не влияют на эти характеристики.
Физические параметры алюминиевых сплавов
Перечислим физические свойства нескольких сплавов на основе алюминия:
- Соединение АД1 – технически чистое вещество, в котором присутствует 0,7% примесей. Добавки увеличивают устойчивость к воздействию внешних факторов, уменьшают пластичность и электропроводность вещества. Технический алюминий устойчив к химическому воздействию, превосходит по этим параметрам другие вещества. На поверхности материала присутствует тонкая оксидная прослойка. Низкое содержание примесей положительно воздействует на устойчивость к коррозии. Магний и марганец не изменяют эти свойства. Правка методом растяжения – заключительная процедура обработки детали из вещества марки АД1. Для этого используются роликоправильные машины. Марганец и магний помогают создавать крепкие детали, но уменьшает их пластичность.
- Марка АМц устойчива к коррозии. Детали прекрасно поддаются обработке газовой, аргонной, атомно-водородной и контактной сваркой. Материал прекрасно деформируется при любой температуре. После термообработки прочность не повышается. Изготавливаются детали в отожженном или горячем прессованном виде.
- AMr3, Amr2. Такие соединения не ржавеют, хорошо подвергаются обработке точечной, газовой, роликовой сваркой. После горячей деформации охладить сплав алюминия можно на воздухе. После термообработки характеристики прочности не повышаются. При изготовлении деталей используют два режима термообработки: низкий 273-350 градусов и высокий 360-420 градусов.
- АД31 отличается пластичностью, хорошей устойчивостью к окислению. После сварки материал не становится более подверженным ржавчине. Прочность повышается после термообработки.
Виды алюминиевых сплавов
Алюминий, а также сплавы на его основе создаются из металлической руды, которая делится на несколько видов:
- Первичная.
- Техническая.
- Литейная.
- Деформируемая.
- Антифрикционная.
По методу использования вещества делятся на деформируемые и литейные. Деформированные отличаются повышенной пластичностью после термообработки. Литейные могут хорошо заполнять формы для отливки.
Пластичные вещества отличаются устойчивостью к коррозии, хорошей свариваемостью. Прочность сплава из алюминия зависит от количества используемой меди. Если добавляется 6% вещества для легирования, устойчивость к механическим воздействиям увеличиваются приблизительно на 30 МПа, текучесть повышается на 20 МПа.
Показатель относительного удлинения немного снижается в таких условиях, но не превышает пределы 35%. Если количество магния превышает 6%, структура материала становится нестабильной, уменьшается устойчивость к коррозии. Чтобы улучшить характеристики, в соединение добавляют такие элементы:
Добавление меди и железа плохо сказываются на состоянии алюминиево-магниевых соединений. Показатель свариваемости и стойкости к воздействию ржавчины ухудшается.
Добавление марганца позволяет повышать пластичность. Для создания мелкозернистой структуры проводится легирование с помощью титана. Чтобы состояние вещества было стабильным, добавляется марганец. Кремний и железо являются главными примесями марганцевых соединений.
Добавки из алюминия, меди, кремния применяются при производстве втулочных подшипников, блоков цилиндров. Из-за твердой поверхности приработка требует продолжительных усилий.
После легирования медью повышается термостойкость. Даже низкоуглеродистая сталь не так устойчива к температурному воздействию. Такой продукт неустойчив к воздействию коррозии, поэтому требует обработки и полимеризации. Алюминиево-медное соединение модифицируется с помощью таких материалов:
Магний сильно повышает прочность металла, придаёт текучесть. Жаропрочность соединения увеличивается после добавления никеля и железа. Стимулируется процесс искусственного старения.
Добавление кремния помогает получить вещество, которое называется силумином. Качественные характеристики соединения повышаются небольшим количеством натрия и никеля. Такие материалы используются для декоративного литья, производства корпусов механизмов и деталей бытовой техники. Они применяются в таких отраслях, благодаря хорошим литейным характеристикам.
Алюминий, магний и цинк удобно обрабатывать, такой материал отличается устойчивостью к механическим воздействиям. Эти характеристики обеспечивает хорошая растворимость цинка и магния. Под воздействием холода такое свойство заметно снижается. Материал неустойчив к коррозии, поэтому требуется дополнительное легирование с помощью меди.
Марки алюминиевых сплавов
Различают три вида маркировки:
- Буквенно-цифровая.
- Обычная цифровая.
- Международный вариант.
Основной материал в сплаве на основе алюминия отмечается первой цифрой в соответствии с ГОСТом. Второе числовое обозначение определяет легирующую систему, которая использовалась. Дополнительные символы указывают на разновидность модификации.
Что такое алюминиевый сплав?
Материал добывают из бокситовой руды. Залежи такой породы есть в России, Америке, Франции и других странах. Алюминий и некоторые его сплавы отличаются мягкостью, устойчивостью к коррозии. Температура плавления составляет примерно 700 градусов. Плотность 2,7 г на кв. см. Вещество прекрасно проводит электричество и тепло, взаимодействует с кислородом. Показатель упругости – 7000 Мпа, прочность – 150 МПа. При использовании некоторых добавок понижается устойчивость к коррозии. Это происходит по причине повреждения оксидной пленки.
Алюминий и сплавы
Алюминий используется для изготовления различных деталей и сплавов на его основе. В процессе изучения и применения этого металла, была разработана технология его обработки. Для придания материалу требуемых свойств, используется легирование. Этот процесс подразумевает, что в расплавленном состоянии, алюминий смешивается с расплавами дополнительных элементов.
Такой процесс позволяет повышать качество металлургической продукции. В зависимости от выбранных пропорций и дополняющих элементов, изменяются химические, механические и физические свойства металла. На сегодняшний день чистый алюминий практические не используется в промышленности, по причине низкого показателя прочности. Сплавы же получили широкое применение и постоянно совершенствуются пропорции и технологии их обработки. Сварка алюминия выполняется точечной или аргонодуговой установкой, также используется электродуговая сварка.
Основные свойства алюминия
Главными факторами, определяющими обширность использования любого материла, являются его свойства и показатели. На сегодняшний день Сплавы на основе алюминия применяются практически во всех сферах деятельности. Простой причиной для такого распространения служат основные свойства алюминия, которые приведены в списке.
- плотность — 2,7 г/см³
- температура плавления технического алюминия — 658 °C;
- температура плавления чистого алюминия — 660 °C;
- удельная теплота плавления— 390 кДж/кг;
- температура кипения — 2500 °C;
- удельная теплота испарения— 10,53 МДж/кг;
- удельная теплоемкость— 880 Дж/кг·K;
- временное сопротивление литого алюминия — 10—12 кг/мм², временное сопротивление деформируемого — 18—25 кг/мм²,временное сопротивление сплавов — 38—42 кг/мм²;
- Твёрдость по Бринеллю — 24…32 кгс/мм²;
- пластичность у технического — 35 %;
- пластичность у чистого — 50 %;
- Модуль Юнга— 70 ГПа;
- Алюминий обладает высокой электропроводностью (37·10 6 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражающей способностью;
- Слабый парамагнетик;
- Температурный коэффициент линейного расширения 24,58·10 −6 К −1 (20…200 °C);
- Удельное сопротивление 0,0262..0,0295 Ом·мм²/м;
- Температурный коэффициент электрического сопротивления 4,3·10 −3 K −1 . Алюминий переходит в сверхпроводящее состояние при температуре 1,2 кельвина.
Важным свойством, которым отличаются сплавы на основе алюминия — это высокая пластичность. Легко может раскатываться в фольгу, что особенно важно для использования в электронике и электротехнике. Материал легко может обрабатываться при небольших механических усилиях. Невысокая температура плавления позволяет переплавлять и изготавливать детали из сплавов алюминия с минимальными энергетическими затратами, что удешевляет производство и саму продукцию.
Марки алюминия по ГОСТУ
Алюминий и его сплавы, равно как и другие металлы, маркируется по установленным стандартам. Так, существуют марки алюминия по ГОСТУ, которые приведены в списках.
Деформируемые алюминиевые сплавы:
Упрочняемые термической обработкой:
- Дюраль Д1, Д16, Д20*, сплавы алюминия меди и марганца [Al-Cu-Mg];
- Сплав авиаль (АВ);
- Высокопрочный сплав (В95);
- Сплавы для ковки и штамповки (АК6, АК8, АК4-1 [жаропрочный]).
Не упрочняемые термической обработкой:
- Сплавы алюминия с марганцем (АМц);
- Сплавы алюминия с магнием (АМг2, АМг3, АМг5, АМг6).
Литейные алюминиевые сплавы для фасонного литья:
- Сплавы алюминия с кремнием (силумин /) Al-Si (АЛ2, АЛ4, АЛ9) — высокая плотность отливок, легко обрабатываются резанием, отличаются высокими линейными показателями;
- Сплавы алюминия с медью Al-Cu (АЛ7, АЛ19) — высокие механические свойства после термической обработки, легко обрабатываются резанием;
- Сплавы алюминия с магнием Al-Mg (АЛ8, АЛ27) — повышенная стойкость к коррозии, повышенные механические свойства, легко обрабатывается резанием;
- Жаропрочные алюминиевые сплавы (АЛ1, АЛ21, АЛ33) — легко обрабатываются резанием, повышенная жаропрочность.
Классификация с точки зрения удобства механической обработки (Мягкие и пластичные, неудобные для механической обработки резанием):
- Отожженные — Д16, АВ;
- Не упрочняемые термической обработкой — АМц, АМг2, АМг3, АМг5, АМг6.
Относительно прочные и твердые сплавы алюминия, которые достаточно легко обрабатывать механическим путем:
- Закаленные и искусственно состаренные: Д16Т, Д16Н, АВТ;
- Ковочные: АК6, АК8, АК4-1;
- Литейные: АЛ2, АЛ4, АЛ9, АЛ8, АЛ27, АЛ1, АЛ21, АЛ33.
post_views_count: 706
—>
Оставьте свой комментарий Отменить ответ
Цветные металлы — это большая часть всех имеющихся металлов в…
Марки алюминия: виды, свойства и области применения
Сегодня алюминий используется практически во всех отраслях промышленности, начиная с производства пищевой посуды и заканчивая созданием фюзеляжей космических кораблей. Для тех или иных производственных процессов подходят только определенные марки алюминия, которые обладают определенными физико-химическими свойствами.
Виды алюминия
Все марки металла описаны и внесены в единую систему признанных национальных и международных стандартов: Европейских EN, Американских ASTM и международных ISO. В нашей стране марки алюминия определены ГОСТом 11069 и 4784. Во всех документах алюминий и его сплавы рассматриваются отдельно. При этом сам металл подразделяется именно на марки, а сплавы не имеют конкретно определенных знаков.
В соответствии с национальными и международными стандартами, следует выделить два вида микроструктуры нелегированного алюминия:
- высокой чистоты с процентным содержанием более 99,95%;
- технической чистоты, содержащей около 1% примесей и добавок.
В качестве примесей чаще всего рассматривают соединения железа и кремния. В международном стандарте ISO для алюминия и его сплавов выделена отдельная серия.
Марки алюминия
Технический вид материала делится на определенные марки, которые закреплены за соответствующими стандартами, например АД0 по ГОСТ 4784-97. При этом в классификацию входит и металл высокой частоты, чтобы не создавать путаницу. Данная спецификация содержит следующие марки:
- Первичный (А5, А95, А7Е).
- Технический (АД1, АД000, АДС).
- Деформируемый (АМг2, Д1).
- Литейный (ВАЛ10М, АК12пч).
- Для раскисления стали (АВ86, АВ97Ф).
Кроме того, выделяют и категории лигатуры – соединения алюминия, которые используются для создания сплавов из золота, серебра, платины и других драгоценных металлов.
Первичный алюминий
Первичный алюминий (марка А5) – типичный пример данной группы. Его получают путем обогащения глинозема. В природе металл в чистом виде не встречается ввиду его высокой химической активности. Соединяясь с другими элементами, он образует бокситы, нефелины и алуниты. Впоследствии из этих руд получают глинозем, а из него с помощью сложных химико-физических процессов — чистый алюминий.
ГОСТ 11069 устанавливает требования к маркам первичного алюминия, которые следует отметить путем нанесения вертикальных и горизонтальных полос несмываемой краской различных цветов. Данный материал нашел широкое применение в передовых отраслях промышленности, главным образом там, где от сырья требуются высокие технические характеристики.
Технический алюминий
Техническим алюминием называют материал с процентным содержанием инородных примесей менее 1%. Очень часто его также называют нелегированным. Технические марки алюминия по ГОСТу 4784-97 характеризуются очень низкой прочностью, но высокой антикоррозионной стойкостью. Благодаря отсутствию в составе легирующих частиц на поверхности металла быстро образуется защитная оксидная пленка, которая отличается устойчивостью.
Деформируемый алюминий
К деформируемому алюминию относят материал, который подвергают горячей и холодной обработке давлением: прокатке, прессованию, волочению и другим видам. В результате пластических деформаций из него получают полуфабрикаты различного продольного сечения: алюминиевый пруток, лист, ленту, плиту, профили и другие.
Область применения деформируемого алюминия, как и та, где применяется алюминиевый пруток, достаточно обширна. Он используется как в областях, требующих высоких технических характеристик от материалов — в корабле- и самолетостроении, так и на строительных площадках в качестве сплава для сварки.
Литейный алюминий
Литейные марки алюминия используются для производства фасонных изделий. Их главной особенностью является сочетание высокой удельной прочности и низкой плотности, что позволяет отливать изделия сложных форм без образования трещин.
- Высокогерметичные материалы (АЛ2, АЛ9, АЛ4М).
- Материалы с высокой прочностью и жароустойчивостью (АЛ 19, АЛ5, АЛ33).
- Вещества с высокой антикоррозионной устойчивостью.
Очень часто эксплуатационные характеристики изделий из литейного алюминия повышают различными видами термической обработки.
Алюминий для раскисления
На качество изготавливаемых изделий оказывает влияние и то, какие имеет алюминий физические свойства. И применение низкосортных сортов материала не ограничивается созданием полуфабрикатов. Очень часто он используется для раскисления стали – удаления из расплавленного железа кислорода, который растворен в нем и повышает тем самым механические свойства металла. Для проведения данного процесса чаще всего применяются марки АВ86 и АВ97Ф.