Почему все металлы проявляют только восстановительные свойства
Elton-zoloto.ru

Драгоценные металлы

Почему все металлы проявляют только восстановительные свойства

Расположение металлов в Периодической системе химических элементов и их свойства

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Рис. 1. Расположение металлов среди элементов подгрупп А (выделены синим)

Особенности строения атомов

По сравнению с атомами неметаллов, атомы металлов имеют большие размеры и меньшее число внешних электронов, обычно оно равно 1–2. Следовательно, внешние электроны атомов металлов слабо связаны с ядром, металлы их легко отдают, проявляя в химических реакциях восстановительные свойства.

Свойства элементов металлов

Рассмотрим закономерности изменения некоторых свойств металлов в группах и периодах.

В периодах с увеличением заряда ядра радиус атомов уменьшается. Ядра атомов все сильнее притягивают внешние электроны, поэтому возрастает электроотрицательность атомов, металлические свойства уменьшаются. Рис. 2.

Рис. 2. Изменение металлических свойств в периодах

В главных подгруппах сверху вниз в атомах металлов возрастает число электронных слоев, следовательно, увеличивается радиус атомов. Тогда внешние электроны будут слабее притягиваться к ядру, поэтому наблюдается уменьшение электроотрицательности атомов и увеличение металлических свойств. Рис. 3.

Рис. 3. Изменение металлических свойств в подгруппах

Перечисленные закономерности характерны и для элементов побочных подгрупп, за редким исключением.

Атомы элементов металлов склонны к отдаче электронов. В химических реакциях металлы проявляют себя только как восстановители, они отдают электроны и повышают свою степень окисления.

Принимать электроны от атомов металлов могут атомы, составляющие простые вещества неметаллы, а также атомы, входящие в состав сложных веществ, которые способны понизить свою степень окисления. Например:

2Na 0 + S 0 = Na +1 2S -2

Zn 0 + 2H +1 Cl = Zn +2 Cl2 + H 0 2

Не все металлы обладают одинаковой химической активностью. Некоторые металлы при обычных условиях практически не вступают в химические реакции, их называют благородными металлами. К благородным металлам относятся: золото, серебро, платина, осмий, иридий, палладий, рутений, родий.

Благородные металлы очень мало распространены в природе и встречаются почти всегда в самородном состоянии (Рис. 4). Несмотря на высокую устойчивость к коррозии-окислению, эти металлы все же образуют оксиды и другие химические соединения, например, всем известны соли хлориды и нитраты серебра.

Рис. 4. Самородок золота

Подведение итога урока

На этом уроке вы рассмотрели положение химических элементов металлов в Периодической системе, а также особенности строения атомов этих элементов, определяющие свойства простых и сложных веществ. Вы узнали, почему химических элементов металлов значительно больше, чем неметаллов.

Список литературы

  1. Оржековский П.А. Химия: 9-й класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.: Астрель, 2013. (§28)
  2. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§34)
  3. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. – М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с. 86–87)
  4. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) (Источник).
  2. Электронная версия журнала «Химия и жизнь» (Источник).

Домашнее задание

  1. с. 195–196 №№ 7, А1–А4 из учебника П.А. Оржековского «Химия: 9-й класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. – М.: Астрель, 2013.
  2. Какими свойствами (окислительными или восстановительными) может обладать ион Fe 3+ ? Ответ проиллюстрируйте уравнениями реакций.
  3. Сравните радиус атомов, электроотрицательность и восстановительные свойства натрия и магния.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Уроки по неорганической химии для подготовки к ЕГЭ

Свойства простых веществ:

Свойства сложных веществ:

Особенности протекания реакций:

Химические свойства металлов

1. Щелочные (Li-Fr), щелочно-земельные (Ca-Ra) металлы, Mg

1) Реагируют с кислородом (подробнее)

Все Щ металлы, кроме Li, образуют не оксиды, а пероксиды:

Оксиды получают взаимодействием пероксидов с металлом:

2) Реагируют с водородом (подробнее)

3) Реагируют с водой (подробнее)

4) Реагируют с галогенами, серой, азотом, фосфором, углеродом:

5) Реагируют с некоторыми кислотными оксидами:

CO2 + 2Mg → 2MgO + C

SiO2 + 2Mg → 2MgO + Si
SiO2 + 2Ca → 2CaO + Si
SiO2 + 2Ba → 2BaO + Si

6) Магний как восстановитель используется в производстве кремния и некоторых металлов:

7) Реакции Щ и ЩЗ металлов с растворами солей или кислот не рассматриваются, так как эти металлы очень бурно взаимодействуют с водой, и суммарная реакция изменится.

2. Алюминий

1) Реагирует с кислородом: 4Al + 3O2 → 2Al2O3

2) Не реагирует с водородом (из металлов только Щ и ЩЗ металлы взаимодействуют с водородом)

3) Реагирует с водой, если удалить оксидную пленку:

4) Реагирует с щелочами с выделением водорода (также Be и Zn):

5) Реагируют с галогенами, серой, азотом, фосфором, углеродом:

6) Используется для восстановления менее активных металлов (алюмотермия):

7) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

8) Вытесняет менее активные металлы из их солей:

9) На холоде пассивируется концентрированными растворами серной и азотной кислот. При нагревании реагирует без выделения водорода.

Читать еще:  Почему все металлы пластичны

3. Железо

1) Реагирует с кислородом:

В присутствии воды образуется ржавчина:
4Fe + 3O2 + 6H2O&nbsp → 4Fe(OH)3

2) Не реагирует с водородом (только Щ и ЩЗ металлы взаимодействуют с водородом)

Fe + H2 → реакция не идет

3) Реагирует с парами воды с образованием оксида:

4) Не реагирует с щелочами

Fe + NaOH → реакция не идет

5) Реагирует с кислородом, серой, галогенами при нагревании:

2Fe + 3F2 → 2FeF3 (образуется соль Fe +3 )

2Fe + 3Cl2 → 2FeCl3 (образуется соль Fe +3 )

2Fe + 3Br2 → 2FeBr3 (образуется соль Fe +3 )

Fe + I2 → FeI2 (образуется соль Fe +2 )

6) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

7) Вытесняет менее активные металлы из их солей:

Fe + CuSO4 → FeSO4 + Cu (образуется соль Fe +2 )

8) На холодe пассивируется концентрированными растворами серной и азотной кислот (т.е. реакция не протекает). При нагревании реагирует без выделения водорода:

9) Соединения Fe +3 реагируют с железом, медью, восстанавливаясь до Fe +2 :

4. Хром

1) Реагирует с кислородом:

2) Не реагирует с водородом (только Щ и ЩЗ металлы взаимодействуют с водородом)

Cr + H2 → реакция не идет

3) Реагирует с парами воды с образованием оксида:

4) Не реагирует с щелочами

Cr + NaOH → реакция не идет

5) Реагирует с кислородом, серой, галогенами при нагревании:

2Cr + 3Cl2 → 2CrCl3 (образуется соль Fe +3 )

2Cr + 3Br2 → 2CrBr3 (образуется соль Fe +3 )

Cr + S → Cr2S3 (образуется соль Fe +3 )

6) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

Cr + 2HCl → CrCl2 + H2 (образуется соль Cr +2 )

7) Пассивируется концентрированным и разбавленным растворами азотной кислоты (т.е. реакция не протекает).

5. Медь

1) Реагирует с кислородом:

2) Реагирует с соединениями Cu +2 с образованием промежуточной степени окисления +1:

CuCl2 + Cu → 2CuCl

3) Не реагирует с водородом (только Щ и ЩЗ металлы взаимодействуют с водородом)

Cu + H2 → реакция не идет

4) Не реагирует с парами воды (так как находится в ряду напряжений после водорода):

Cu + H2O → реакция не идет

5) Не реагирует с щелочами

Cu + NaOH → реакция не идет

6) Реагирует с кислородом, серой, галогенами при нагревании:

Cu + Cl2 → CuCl2 (образуется соль Cu +2 )

Cu + Br2 → CuBr2 (образуется соль Cu +2 )

2Cu + I2 → 2CuI (образуется соль Cu +1 )

Cu + S → CuS (образуется соль Cu +2 )

7) Не реагирует с N2, C, Si.

8) Не реагирует с кислотами-неокислителями, так как находится правее водорода в ряду напряжений:

9) Реагирует с кислотами-окислителями как слабый восстановитель:

7. Цинк

1) Реагирует с кислородом: 2Zn + O2 → 2ZnO

2) Не реагирует с водородом (из металлов только Щ и ЩЗ металлы взаимодействуют с водородом)

3) Реагирует с парами воды, т.е. при сильном нагревании, с образованием оксида:

4) Реагирует с твердыми щелочами и растворами щелочей с выделением водорода (также Be и Al):

5) Реагируют с галогенами, серой при нагревании:

6) Реагирует с кислотами-неокислителями, так как находится до водорода в ряду напряжений, с выделением водорода:

8) Реагирует с кислотами-окислителями:

Так как Zn находится примерно в центре ряда напряжений, то в реакциях с азотной кислотой могут образовываться разные продукты:

Окислительно-восстановительные свойства элементов в Периодической таблице

Окислительно-восстановительные реакции могут проходить только при условии, что исходные компоненты содержат атомы, молекулы или ионы, обладающие противоположными способностями принимать или отдавать электроны.

В приведенной реакции хлор и фосфор изменяют свои степени окисления:

  • P 0 -5e – → P +5 , фосфор (P 0 ) является восстановителем, окисляясь до P +5 (степень окисления фосфора повышается на 5 единиц от 0 до +5).
  • Cl +5 +6e – → Cl -1 , хлор (Cl +5 ) является окислителем, восстанавливаясь до Cl -1 (степень окисления хлора понижается на 6 единиц – от +5 до -1).

В периодической таблице Менделеева четко прослеживается закономерность изменения окислительно-восстановительных свойств элементов:

  • В периодах с увеличением порядкового номера элемента (слева-направо) нарастают окислительные свойства и убывают восстановительные – натрий самый сильный восстановитель в третьем периоде, а хлор – самый сильный окислитель.
  • В главных подгруппах, в пределах одной главной подгруппы с повышением порядкового номера (по направлению сверху-вниз) нарастают восстановительные свойства элементов и убывают окислительные – в VIIа группе фтор является сильным окислителем, а астат в некоторых соединениях проявляет восстановительные свойства.

На рисунке ниже показана примерная принадлежность элементов к восстановителям (голубой цвет) и окислителям (красный цвет).

С окислительно-восстановительными свойствами элементов в периодической таблице в общем чертах понятно. Теперь скажем пару слов о ионах.

  • Элементарные катионы металлов (Na + , Cu 2+ , Ca 2+ ) являются окислителями и не проявляют восстановительных свойств, окислительные свойства снижаются по мере роста активности металла.
  • Ионы металлов с промежуточными степенями окисления могут проявлять, как восстановительные, так и окислительные свойства (Fe 2+ – восстановитель; Fe 3+ – окислитель).
  • Элементарные анионы (Cl – , Br – , I – ) являются восстановителями.
  • Сложные ионы являются окислителями, если содержат атомы элементов с высокой степенью окисления (Cr2O7 2- , ClO3 – ,NO3 – ), при этом окислительные свойства обусловлены всем анионом, но не конкретным атомом, имеющим высокую степень окисления.

А что же с окислительно-восстановительными свойствами сложных веществ?

При взаимодействии сложных веществ следует обращать внимание на те элементы, которые в ходе реакции меняют свою степень окисления (если таковых нет, то и реакция не является окислительно-восстановительной).

  • Если элемент, меняющий свою степень окисления, присутствует в исходном веществе в максимальной степени окисления – такое вещество может быть только окислителем, например перманганат калия, в котором марганец имеет максимальную степень окисления, т.е., может только принимать электроны.
  • Если элемент, меняющий свою степень окисления, присутствует в исходном веществе в низшей степени окисления – такое вещество может быть только восстановителем, например, сульфат марганца (II), в котором марганец имеет низшую степень окисления, т.е., может только отдавать электроны.
  • Если элемент, меняющий свою степень окисления, присутствует в исходном веществе в промежуточной степени окисления, – такое вещество может быть как окислителем, так и восстановителем – все зависит от других реагирующих веществ и условий протекания реакции.
Читать еще:  Как правильно припаять провода

Рассмотрим вкратце вещества, которые могут проявлять и восстановительные, и окислительные свойства, в зависимости от условий реакции и других взаимодействующих веществ.

Оксид серы (IV) в некоторых случаях играет роль восстановителя, например, окисляясь кислородом, но в металлургии оксид серы используют в реакции извлечения серы из отходящих газов, где оксид серы проявляет свойства окислителя:

Пероксид водорода H2O2, как восстановитель применяется для дезинфекции, травления германиевых пластинок при изготовлении полупроводниковых приборов. Окислительные свойства пероксида водорода используют при отбеливании пуха, пера, мехов, тюли, волос.

Сернистая кислота в реакции с сероводородом играет роль окислителя, поскольку в молекуле H2S сера имеет степень окисления -2:

В реакции с кислородом сернистая кислота выступает восстановителем, поскольку кислород является более сильным окислителем:

Не последнюю роль на окислительно-восстановительные свойства веществ оказывает среда, в которой протекает химическая реакция:

Оксид марганца (IV) является окислителем только в кислотной среде:
MnO2+4H + +2e – → Mn 2+ +2H2O

Перманганат калия KMnO4 является окислителем в любой среде:

  • кислая среда: MnO4 – +8H + +5e – → Mn 2+ +4H2O
  • щелочная среда: MnO4 – +1e – → MnO4 2-
  • нейтральная среда: MnO4 – +2H2O+3e – → MnO2+4OH –

Окислители и восстановители любят “свою” среду – в кислотной среде сила окислителей увеличивается, а в щелочной – увеличивается сила восстановителей.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Неметаллы. Физические и химические свойства

Положение неметаллов в периодической системе

Как же определить, относится вещество к металлам или к неметаллам?

Если внимательно посмотреть на Периодическую систему Д.И. Менделеева (подробно с классификацией элементов знакомимся в параграфе 42 учебника по химии для 8 класса под редакцией Еремина В.В.) и провести условную диагональ от водорода через бор до астата и неоткрытого пока элемента № 118, таблица неметаллов займет правый верхний угол.

Каждый горизонтальный период таблицы заканчивается элементом с завершенным внешним энергетическим уровнем. Эта группа элементов носит название благородные газы и имеет особые свойства, с которыми можно познакомиться в параграфе 18 учебника «Химия» для 8 класса под редакцией Еремина В.В.

При рассмотрении электронного строения неметаллов можно заметить, что энергетические уровни атома заполнены электронами больше чем на 50% (исключение – бор), и у элементов, расположенных в таблице справа налево количество электронов на внешнем уровне увеличивается. Поэтому в химических реакциях эта группа веществ может быть как акцептором электронов с окислительными свойствами, так и донором электронов с восстановительными свойствами.

Вещества, образующие диагональ бор-кремний-германий-мышьяк-теллур, являются уникальными, и в зависимости от реакции и реагента могут проявлять как металлические, так и неметаллические свойства. Их называют металлоиды. В химических реакциях они проявляют преимущественно восстановительные свойства.

Физические свойства неметаллов. Аллотропия

Если смотреть на металлы, то невооруженным глазом можно заметить общие свойства — металлический блеск, твердое агрегатное состояние (исключение — жидкая ртуть), тепло- и электропроводность.

С неметаллами все намного сложнее. Они могут иметь молекулярное и немолекулярное строение. Благодаря различиям в строении, простые вещества неметаллы существуют в трех агрегатных состояниях:

  1. Молекулярные:
    • Летучие, газообразные, бесцветные кислород, водород.
    • Газообразные, окрашенные хлор, азот, фтор.
    • Единственный жидкий представитель — темно-красный бром.
    • Твердые, но хрупкие вещества с невысокой температурой плавления — кристаллы йода, серы, белого фосфора.
  2. Немолекулярные:
    • Твердые вещества с высокой температурой плавления — кремний, графит, алмаз и красный фосфор.

Большинство из неметаллических веществ плохо проводят электричество и тепло.

Исключением является графит — разновидность углерода.

Аллотропия — уникальная способность неметаллического элемента образовывать несколько простых веществ. В естественной среде существуют аллотропные модификации элементов, которые отличаются физическими и химическими свойствами. К ним относятся озон и кислород, графит и алмаз. Подробнее о физических свойствах неметаллов вы можете узнать в учебнике «Химия. 9 класс».

Химические свойства неметаллов

Как мы разобрали выше, группа неметаллов довольно полиморфна и в зависимости от типа реакций, в которых они участвуют, могут проявлять и окислительные, и восстановительные свойства. Фтор — исключение в этом ряду. Он всегда окислитель.

В ряду F,O,N,CL,Br,I,S,C,Se,P,As,Si,H окислительные свойства уменьшаются. Восстановительные свойства кислород может проявлять только в отношении фтора.

В этом типе реакций проявляются окислительные свойства и неметаллы принимают электроны с образованием отрицательно заряженных частиц.

Практически все неметаллы реагируют с водородом. Лишь благородные газы составляют исключение для реакций данного типа. Продуктом реакции являются летучие водородные соединения:

  1. Реакции с кислородом.

Неметаллы образуют кислотные или несолеобразующие оксиды.
S + O2 = SO2

P + 5O2 = 2P2O5

4. Взаимодействие с водой и кислотами для неметаллов не характерно.

Что ещё почитать?

История открытия неметаллов

Медная посуда, железные орудия труда, золотые украшения — издавна человек замечал, что у всех этих веществ есть определенные общие свойства:

  • они проводят тепло и электрический ток;
  • для них характерен металлический блеск;
  • благодаря пластичности и ковкости им можно придать любую форму;
  • для всех веществ характерна металлическая кристаллическая решетка.

В противовес металлам были и другие вещества, не обладающие металлическими свойствами, и названные соответственно неметаллами. Практически до конца XVII века ученым-алхимикам было известно всего лишь два вещества-неметалла — углерод и сера.

Читать еще:  Как добывают бронзу

В 1669 году Бранд в поисках «философского камня» открыл белый фосфор. И за короткий период с 1748 по 1798 годы было открыто около 15 новых металлов и 5 неметаллов.

Попытки открытия фтора стоили исследователям не только здоровья, но и жизни. Деви, братья Кнокс, Гей-Люссак — это неполный список жертв науки, что потеряли здоровье в попытках выделить фтор из плавикового шпата. Лишь в 1886 году Муассан решил сложную задачу способом электролиза. И получил первый галоген, а ещё – ядовитый хлор. Во времена Первой мировой войны его использовали как оружие массового поражения.

В настоящее время открыто 22 неметаллических элемента.

Окислительно- восстановительные свойства d-металлов

Все d-металлы, за исключением элементов подгруппы скандия, имеют переменную степень. Поэтому соединения таких металлов выступают как в роли типичных окислителей и восстановителей, так и проявляют окислительно-восстановительную двойственность. Восстановительная активность элементов в одной и той же степени окисления в пределах каждого периода снижается: так, если Ti 2+ – энергичный восстановитель, Zn 2+ восстановителем не является 2TiO + 3H2SO4 → Ti2(SO4)3 + H2 + 2H2O

Наоборот, при максимальной степени окисления окислительная активность растет. Например, соединения титана (IV) и ванадия (V) – слабые окислители, а соединения хрома (VI) и марганца (VII) – сильные окислители:

Изменение окислительно-восстановительных свойств происходит с увеличением степени окисления у одного и того же d-элемента. Например, для соединений марганца (II) восстановительные свойства не характерны:

Соединения марганца (IV) проявляют окислительно-восстановительную двойственность:

Соединения же марганца (VII) – сильные окислители:

Все d – элементы образуют комплексные соединения. Комплексными соединениями называются определенные химические соединения, образованные сочетанием отдельных компонентов и представляющие собой сложные ионы или молекулы, способные к существованию, как в кристаллах, так и в растворах.

В молекуле комплексного соединения один атом или ион, обычно положительно заряженный, занимает центральное место и называется комплексообразователем. В непосредственной близости к нему расположены или координированы противоположно заряженные ионы или нейтральные молекулы, называемые лигандами. Комплексообразователь и лиганды образуют внутреннюю сферу комплексного соединения. Число лигандов, расположенных вокруг комплексообразователя, называется координационным числом.Чаще всего координационное число равно 6, 4 и 2. В формулах комплексных соединений внутреннюю сферу обозначают квадратными скобками. Все остальные ионы, не вошедшие во внутреннюю сферу, составляют внешнюю сферу.

Все d – элементы являются прекрасными комплексообразователями. Склонность к комплексообразованию объясняется наличием у атомов и ионов d-элементов свободных атомных орбиталей внешнего и предвнешнего энергетического уровня. Они могут образовывать нейтральные, катионные и анионные комплексы, например: [Mn(CO)5], [Cu(NH3)4]SO4, K3[Fe(CN)6].

Лекция № 17.ОБЩАЯ ХАРАКТЕРИСТИКА НЕМЕТАЛЛОВ

Положение неметаллов в периодической системе. К неметаллам относятся 22 элемента. В периодической системе неметаллы расположены в главных подгруппах I, III – VIII групп. Все они (за исключением водорода и гелия) относятся к р-элементам.

Распространенность неметаллов в земной коре. Неметаллов немного, но они являются основными составляющими окружающего мира: основными составными частями воздуха являются кислород, азот, углекислый газ; земная кора на ¾ состоит из кислорода и кремния; в состав живых существ входят кислород (70%), углерод (18%), водород (11%), а также азот, фосфор, хлор, сера кремний.

Физические свойства. Неметаллы не имеют характерного блеска и различно окрашены. Не проводят электрический ток и тепло, у них отсутствует ковкость, тягучесть и т.д. Эти свойства обусловлены отсутствием в неметаллах делокализованных электронов (электронного газа).

Общие химические свойства неметаллов. У неметаллов, кроме водорода гелия, на внешнем уровне содержится от 3 до 7 электронов и потому они склонны принимать электроны до полного заполнения внешних орбиталей, проявляя окислительные свойства. Самым сильным окислителем является фтор. Практически фтор разрушает все обычные материалы (стекло, сталь, керамику), он непосредственно взаимодействует со всеми простыми веществами, кроме кислорода, азота и углерода (в виде алмаза). Кроме F2 сильными окислителями являются O2, Cl2, Br2. Окислительная способность в ряду F2 > O2 > Cl2 > Br2 убывает. Только окислителем является один фтор, а остальные неметаллы, проявляя главным образом окислительные свойства, могут быть и восстановителями.

Преимущественно восстановительные свойства проявляют H2,B, C, Si, P. Примерно одинаковыми свойствами окислителей и восстановителей обладают N2, S, Se. Для них характерны реакции диспропорционирования:

Все неметаллы, кроме галогенов, непосредственно взаимодействуют с кислородом, образуя кислотные оксиды. Кислотным оксидам соответствуют кислоты. При переходе слева направо в периоде уменьшается, сила кислот увеличивается. При переходе сверху вниз в группе сила кислот уменьшается.

Если взять один и тот же кислотообразующий элемент, например Cl2, то с увеличением степени окисления Cl2, сила кислот и устойчивость увеличивается, а окислительная способность уменьшается.

Все неметаллы, кроме кислорода, с водородом образуют газообразные гидриды, причем галогены, O2, S, Se, Te, N2, C могут соединяться с водородом непосредственно, для остальных неметаллов гидриды получают косвенным путем: Mg2Si + 2H2SO4 = SiH4 + 2MgSO4

В гидридах степень окисления неметаллов имеет отрицательное значение, поэтому все они являются восстановителями. При переходе сверху вниз в подгруппе устойчивость соединений с отрицательной степенью окисления уменьшается, а восстановительная способность увеличивается. Например, HI – менее устойчивое соединение и более сильный восстановитель, чем HCl -1 .

В водных растворах гидриды могут быть сильными кислотами (HCl, HBr, HI), кислотами средней силы (HF), слабыми кислотами(H2S, H2Se, H2Te), а раствор NH3 представляет собой слабое основание NH4OH. Гидриды PH3, AsH3, CH4 по отношению к воде безразличны, а SiH4, B2H6 водой разлагаются: SiH4 + H2O + 2KOH = K2SiO3 + 4H2

Дата добавления: 2014-01-04 ; Просмотров: 1853 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
Adblock
detector