Сплав меди и никеля как называется
Elton-zoloto.ru

Драгоценные металлы

Сплав меди и никеля как называется

Сплавы меди и никеля

Медно-никелевый сплав
МН0.6 МН10 МН16 МН19 МН25
МН95-5 МНА13-3 МНА6-1.5 МНЖ5-1 МНЖКТ5-1-0.2-0.2
МНЖМц10-1-1 МНЖМц30-1-1 МНМц3-12 МНМц40-1.5 МНМц43-0.5
МНМцАЖ3-12-0.3-0.3 МНЦ12-24 МНЦ15-20 МНЦ18-20 МНЦ18-27
МНЦС16-29-1.8 НМЖМц28-2.5-1.5

К медно-никелевым сплавам относятся сплавы на основе меди, в которых основным легирующим элементом является никель. Легирование меди никелем значительно повышает ее механические свойства, коррозионную стойкость, термоэлектрические характеристики. Промышленные медно-никелевые сплавы можно условно разделить на две группы: конструкционные и электротехнические. К первой группе относятся коррозионно-стойкие и высокопрочные сплавы типа мельхиор, нейзильбер и куниаль. В качестве дополнительных легирующих элементов в них добавляют марганец, алюминий, цинк, железо, кобальт, свинец, а также хром, церий, магний, литий.

Мельхиоры имеют высокую коррозионную стойкость в различных средах – в пресной и морской воде, в органических кислотах, растворах солей, в атмосферных условиях. Добавки железа и марганца увеличивают стойкость медно-никелевых сплавов против ударной коррозии. Являясь твердыми растворами, мельхиоры обрабатываются давлением в горячем и холодном состоянии.

Сплавы на основе меди, в которых основными легирующими компонентами являются никель и цинк, называются нейзильберами. Они представляют собой твердые растворы на основе меди. Легирование цинком приводит к повышению механических свойств медно-никелевых сплавов и приданию им красивого серебристого цвета и удешевлению. Нейзильберы отличаются высокой коррозионной стойкостью: не окисляются на воздухе, сравнительно устойчивы в органических кислотах и растворах солей. Нейзильберы обрабатываются давлением в горячем (за исключением свинцовистого нейзильбера) и в холодном состоянии. Небольшое количество свинца вводится для улучшения обработки резанием.

Сплавы на основе тройной системы Сu-Ni-А1 называют куниалями. Эти сплавы отличаются высокими механическими и упругими свойствами, коррозионной стойкостью, устойчивостью при низких температурах. Обрабатываются давлением в горячем состоянии.

Согласно диаграмме состояния предел растворимости а-твердого раствора на основе меди резко уменьшается с понижением температуры. Поэтому куниали относятся к дисперсионно-твердеющим сплавам. Они упрочняются после термической обработки, заключающейся в закалке с 900-1000 °С в воду и старении при 500-600 1-2 ч. При старении происходит распад пересыщенного твердого раствора с образованием двух- или трехфазной структуры с мелкодисперсными выделениями 0-фазы, представляющей собой соединение NiAl, или одновременно 6- и Р-фазы, представляющей собой соединение NiAl2.

К конструкционным медно-никелевым сплавам также относятся сплавы МН95-5 и МНЖ5-1, обладающие высокими механическими свойствами и коррозионной стойкостью, они не склонны к коррозионному растрескиванию.

Были предложены новые группы дисперсионно-твердеющпх сплавов на основе системы Сu-Ni. Это сплавы для токоведущих пружин, работающих при высоких температурах (до 250 °С) состава: 1) Ni (15-20)%, Сr (3,5-4)%, Мn (2,1-3)%, V (0,01-0,5)%, Се (0,01-0,05) %, остальное Сu; после термической обработки (закалка + старение) сплав имеет следующие свойства: 370HV; σв = 1250 МПа; δ = 3%; 2) Ni (4-4,5)%, Si (0,8-1,2)%, Сr (0,4-0,6) %, Аl (0,7-1,1)%, Mg (0,3-0,6) %, Li (0,005-0,04)%; остальное Сu; после термической обработки (закалка + старение): 310 HV; σв = 1000 МПа; σ0,2 = 930 МПа; Е = = 130 ГПа; σупр = 825 МПа; электропроводность составляет 20 % электропроводности меди.

Разработана принципиально новая группа сплавов типа нейзильбер с двухфазной (а + в) структурой, например сплав Сu-15% Ni -37,5% Zn. К этим сплавам применяется обработка «микродуплекс», заключающаяся в закалке с последующей холодной деформацией с заданной степенью обжатия, определяющей возможность прохождения рекристаллизации при старении с одновременным выделением в-фазы.

Выделение в-фазы облегчает зарождение рекристаллизованных зерен вследствие обеднения пересыщенного твердого раствора и тормозит их рост благодаря снижению энергии их границ. В результате такой обработки образуются сверхмелкие зерна и мельчайшие выделения второй фазы, что приводит к росту механических свойств, особенно предела усталости, а при старении приобретается сверхпластичность.

Автор: Администрация Общая оценка статьи: Опубликовано: 2012.03.15

Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
Сплавы меди и никеля труба, лента, проволока, лист, круг Сплавы меди и никеля

Краткие обозначения:
σв – временное сопротивление разрыву (предел прочности при растяжении), МПа ε – относительная осадка при появлении первой трещины, %
σ0,05 – предел упругости, МПа Jк – предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 – предел текучести условный, МПа σизг – предел прочности при изгибе, МПа
δ5,δ4,δ10 – относительное удлинение после разрыва, % σ-1 – предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж – предел текучести при сжатии, МПа J-1 – предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν – относительный сдвиг, % n – количество циклов нагружения
s в – предел кратковременной прочности, МПа R и ρ – удельное электросопротивление, Ом·м
ψ – относительное сужение, % E – модуль упругости нормальный, ГПа
KCU и KCV – ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T – температура, при которой получены свойства, Град
s T – предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ – коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB – твердость по Бринеллю C – удельная теплоемкость материала (диапазон 20 o – T ), [Дж/(кг·град)]
HV – твердость по Виккерсу pn и r – плотность кг/м 3
HRCэ – твердость по Роквеллу, шкала С а – коэффициент температурного (линейного) расширения (диапазон 20 o – T ), 1/°С
HRB – твердость по Роквеллу, шкала В σ t Т – предел длительной прочности, МПа
HSD – твердость по Шору G – модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Как называется сплав меди с никелем?

Медь – пластичный металл, хорошо поддается обработке, обладает электро- и теплопроводностью. Для повышения эксплуатационных свойств в ее состав вводят различные легирующие компоненты. В этой статье речь пойдет о сплаве меди с никелем, который повышает ее стойкость к коррозии, увеличивает прочность и электросопротивление.

Что дает добавка к меди никеля?

Никель вводят в сплав в качестве основного легирующего компонента. Он значительно повышает твердость меди. Металлы наделены редкой особенностью, они полностью растворяются друг в друге. При сплавлении, в зависимости от пропорции, однородные сплавы двух металлов изменяют свои свойства следующим образом:

  • Усиливается устойчивость к действию кислот и щелочей.
  • Увеличивается жаропрочность.
  • Вырабатывается стойкость к коррозии.
  • Повышается упругость и прочность.
  • Понижается температурный коэффициент сопротивления.

Классификация

Используя механические, химико-физические свойства, а также область применения, сплавы меди с никелем условно можно подразделить на две основные группы:

  • Конструкционные – характеризуются высокой антикоррозийной устойчивостью и большой прочностью. К ним относятся мельхиоры, содержащие до 30% никеля и небольшие количества других металлов, нейзильберы, обладающие отличной прочностью и особый сплав куниаль с добавками алюминия, который хорошо обрабатывается давлением.

  • Электротехнические – обладают высоким электрическим сопротивлением. К ним относится термоэлектродный сплав копель, имеющий в составе большое содержание никеля, манганин и константан. Используются в электротехнике для компенсационных проводов, термопар и реостатов.

Сплавы находят применение для изготовления деталей, используются в приборах, теплообменных аппаратах, поэтому к ним предъявляются жесткие требования по химическому составу и физическим характеристикам.

Мельхиор

Сплав меди с никелем, название которого – мельхиор, может содержать в своем составе до 22% основного легирующего компонента никеля, около 80% меди и не больше 0,6 % примесей. У него отмечают высокую прочность, пластичность, коррозийную стойкость. Сплав хорошо поддается механической обработке, его штампуют, режут, чеканят, паяют, полируют, воздействуют давлением в любом виде (в холодном и горячем). Мельхиор выпускается в виде лент, полос и труб. Металл обладает серебристым цветом. Он идет на производство конденсаторных труб, деталей кондиционеров, применяется в приборостроении.

Кроме того, из сплава делают медицинские изделия, недорогие ювелирные украшения, монеты и посуду. Для улучшения внешнего вида изделия покрывают тонким слоем серебра.

Нейзильберы

Сплавы никеля, меди и цинка содержат в своем составе до 35 процентов никеля и 45 процентов цинка, а остальное – медь. У нейзильберов (в переводе с немецкого языка «нового серебра») отмечается красивый серебристый цвет, они не поддаются окислению на воздухе, проявляют стойкость в растворах органических кислот и солей. Благодаря высокой коррозийной стойкости неферромагнитные сплавы находят применение в приборостроении, используются для изготовления медицинских инструментов, часовых механизмов.

При изготовлении изделий для ювелирной промышленности в сплавы добавляют раскислители, которые позволяют понизить количество оксида меди, увеличить пластичность и прочность. При увеличении в сплаве никеля, возрастает его твердость и прочность. При введении алюминия, сплавы становятся дисперсно-твердеющими, при этом повышается и стойкость к коррозии. Присутствие свинца в нейзильберах придает металлу упругость и способствует улучшению обработки резанием.

Сплавы высокого сопротивления

Для изготовления электронагревательных приборов требуются проводники материал, которых обладает высоким удельным и низким показателем температурного коэффициента сопротивления. Точные сопротивления для приборов, как правило, изготовляют из манганинов – это сплав меди, никеля и марганца. В его состав входит 86% меди, марганца 13% и никеля около 3%. Для стабилизации в манганины вводят небольшое количество железа, серебра и алюминия. У сплавов высокая температура плавления, составляющая 960 градусов, средняя плотность чуть больше 8 г/см куб. и оранжевый цвет.

Манганины мало зависят от температуры электрического сопротивления, что очень важно для применения их в электроизмерительных устройствах с повышенной степенью точности. Еще одним достоинством сплавов является очень небольшая термо-ЭДС в паре с медью. Для стабилизации электромеханических свойств проводят искусственное старение манганина. Проволоку нагревают в вакууме до 400 градусов около двух часов, после этого продолжительное время выдерживают при комнатной температуре для получения стабильных свойств. Сплав находит применение для изготовления добавочных сопротивлений, катушек, шунтов, высокоточных измерительных приборов.

Константан

Какой сплав меди и никеля, наряду с манганином, относится к сплавам высокого электрического сопротивления? Это константан, он содержит до 65% меди, до 41% никеля и около 2% марганца. Этот сплав имеет специфический серебристый тон, среднюю плотность и температуру плавления 1270 градусов. Промышленность выпускает из константана проволоку, диаметр которой составляет 0,02-5 миллиметров. Значительная термо-ЭДС в паре с медью ограничивает использование сплава в точных электроизмерительных приборах. Зато он находит применение в термопарах для измерения температуры до 300 градусов.

Константановая проволока из сплава меди с никелем подвергается особой термической обработке путем нагрева ее до 900 градусов и последующего охлаждения. В результате на ее поверхности образуется темно-серая оксидная пленка, которая образует изоляционный слой и не требует дополнительного защитного покрытия. Сплав хорошо поддается механической обработке, поэтому имеет высокие технологические свойства. Он находит применение в измерительных приборах, электронагревательных элементах и реостатах с температурой до 400 градусов.

Заключение

Сплавы меди с никелем применяются в разных отраслях промышленности. Они пластичны и обладают антикоррозийными свойствами. Из них делают детали, имеющие ответственное назначение, применяемые в теплообменных аппаратах и приборах. Поэтому к сплавам предъявляют жесткие требования по плотности и химическому составу.

Медные сплавы

Медные сплавы – продукция металлургического производства, процесс изготовления которой человечество освоило с давних времён. Первый медный сплав – сплав меди с оловом – дал начало целой технологической эпохе истории цивилизации, получившей название «бронзовый век».

Мягкий, пластичный металл розовато-золотистого цвета. Его красота издревле привлекала человека, поэтому первыми изделиями из меди были украшения.

В присутствии кислорода медные слитки и изделия из меди приобретают красновато-жёлтый оттенок за счёт образования плёнки из оксидов. Во влажной среде в присутствии углекислого газа медь становится зеленоватой.

Медь имеет высокие показатели теплопроводности и электропроводности, что обеспечивает ей использование в электротехнике. Не меняет свойств в значительном диапазоне температур от очень низких до очень высоких. Не магнитная.

В природе залежи медной руды чаще, чем других металлов, находятся на поверхности. Это позволяет вести добычу открытым способом. Встречаются крупные медные самородки с высокой чистотой меди и медные жилы. Помимо этого медь получают из таких соединений:

Медные сплавы, их свойства, характеристики, марки

Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.

К медным сплавам относят: бронзу, латунь и медно-никелевые сплавы.

Бронза

Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.

Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.

Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.

Буквенные обозначения легирующих элементов бронз:

  • А – алюминий,
  • Б – бериллий,
  • Ж – железо,
  • К – кремний,
  • Мц – марганец,
  • Н – никель,
  • О – олово,
  • С – свинец,
  • Ц – цинк,
  • Ф – фосфор.

Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».

Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».

Латунь

Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.

Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.

Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.

Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».

Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».

Медно-никелевые сплавы

  • Мельхиор – сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
  • Нейзильбер – дополнительно содержит цинк,
  • Константан – дополнительно содержит марганец.

У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.

Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.

Выпускается 2 марки мельхиора:

  • МНЖМц – сплав меди с никелем, железом и марганцем;
  • МН19 – сплав меди и никеля.

Область применения сплавов меди

Медь обладает невысоким удельным сопротивлением. Это свойство обеспечило меди широкое применение в электротехнической промышленности. Из меди изготавливаются проводники, провода, кабели. Медь используется при изготовлении печатных плат различных электронных устройств. Медные провода используются в электрических двигателях и трансформаторах.

У меди высокая теплопроводность. Это обеспечивает ей применение при изготовлении охладительных и отопительных радиаторов, кондиционеров, кулеров.

Прочность и коррозиоустойчивость меди послужили основанием для изготовления из неё труб, находящих значительную сферу применения: в водопроводных, газовых и отопительных системах, в охладительном оборудовании, в кондиционировании.

В строительстве медь применяется при изготовлении крыш и фасадных деталей зданий.

Бактерицидные особенности меди дают ей возможность использования в медицинских заведениях как дезинфицирующего материала: при изготовлении деталей интерьера, которых люди касаются больше всего – дверных ручек, перил, поручней, бортиков кроватей и т.п.

Медные сплавы имеют не меньшую сферу применения.

Бронзы (по маркам) применяются при производстве деталей машин: паровой и водяной арматуры, элементов ответственного назначения, подшипников, втулок. Оловянистые деформируемые бронзы используют для производства сеток, используемых в целлюлозно-бумажной промышленности.

Латуни (по маркам) находят применение при производстве деталей машин в области теплотехники и химической аппаратуры. Из них изготавливают различные змеевики и сильфоны. В автомобилестроении латуни используют для изготовления конденсаторных труб, патрубков, метизов. В судостроении и авиастроении латуни также используются для изготовления деталей, конденсаторных труб, метизов. Из латуней изготавливаются детали часовых механизмов, полиграфические матрицы.

Мельхиор МНЖМц используется для производства конденсаторных трубок морских судов, работающих в наиболее тяжёлых условиях. Мельхиор МН19 используется для изготовления медицинских инструментов, монет, украшений, столовых приборов.

Источники меди для вторсырья

Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.

Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов. В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально.

Читать еще:  Как спаять два многожильных провода
Ссылка на основную публикацию
Adblock
detector