С какой целью производится нормализация стальных конструкций
Нормализация стали
Одним из способов изменения параметров стали является термообработка. Она включает несколько методов, одним из которых является нормализация. Далее рассмотрены принципы и применение данной технологии, отличия ее от прочих методов этой группы.
Общие положения
Принцип большинства технологий термической обработки подразумевает нагрев и выдержку сталей и охлаждение, что изменяет их строение. Несмотря на один принцип и сходные цели, каждая из них имеет определенные температурные и временные режимы. Термообработка может служить и в качестве промежуточного этапа, и выполнять роль окончательного технологического процесса. В первом случае такие методы используются для подготовки материала к последующей обработке, а во втором данным способом придают новые свойства.
Нормализацией стали называют процесс нагрева, выдержки материала, его последующего охлаждения на воздухе.
В результате формируется нормализованная структура. Этим объясняется название данного способа обработки.
Нормализация применяется для разных сталей, а также отливок. К тому же данной операции подвергают для измельчения структуры материала сварные швы.
Принципы
Суть нормализации состоит в нагреве стали до температуры, превышающей верхние критические значения температуры на 30 — 50°С , выдержке и охлаждении.
Температуру подбирают на основе типа материала. Так, заэвтектоидные варианты следует нормализовать в температурном интервале между точками Ас1 и Ас3, в то время как для доэвтектоидной стали используют температуры более Ас3. В результате все материалы первого типа приобретают одинаковую твердость ввиду того, что в раствор переходит одинаковое количество углерода, и фиксируется одинаковое количество аустенита. Получается состоящая из мартенсита и цемента структура.
Второй компонент способствует повышению износостойкости и твердости материала. Нагрев высокоуглеродистой стали более Ас3 ведет к увеличению внутренних напряжений вследствие роста зерен аустенита и повышению его количества за счет возрастания концентрации углерода в нем, приводящей к снижению температуры мартенситного превращения. Из-за этого сокращаются твердость и прочность.
Что касается доэвтектоидной стали, при нагреве более Ас3 она получает повышенную вязкость. Это обусловлено тем, что в низкоуглеродистой стали при этом образуется мелкозернистый аустенит, который после охлаждения переходит в мелкокристаллический мартенсит. Температуры между Ас1 и Ас3 не используют для обработки таких материалов, так как структура доэвтектоидной стали в данном случае получает феррит, снижающий ее твердость после нормализации и механические свойства после отпуска.
Оптимальные температуры нагрева при различных видах термообработки
Время выдержки определяет степень гомогенизации структуры. Нормативным показателем считают час выдержки на 25 мм толщины.
Интенсивность охлаждения в существенной степени определяет количество перлита и размеры пластин.
Так, существует прямая зависимость между данными величинами. То есть с повышением интенсивности охлаждения формируется больше перлита, расстояние между пластинами и их толщина сокращаются. Это увеличивает твердость и прочность нормализованной стали. Следовательно, низкая интенсивность охлаждения способствует образованию материала меньшей прочности и твердости.
К тому же при обработке предметов с большими перепадами сечения стремятся снизить термические напряжения во избежание коробления, причем и при нагреве, и при охлаждении. Так, перед началом работ их нагревают в соляной ванне.
При снижении температуры обрабатываемого изделия до нижней критической точки допустимо ускорение охлаждения путем помещения его в масло или воду.
Нормализация с отпуском служит в качестве замены закалки для предметов сложной формы либо с резкими перепадами по сечению. Данный способ позволяет избежать дефектов.
Процесс нормализации стали
Кроме того, нормализацию используют с целью измельчения крупнозернистой структуры, улучшения структуры перед закалкой, повышения обрабатываемости резанием, устранения сетки вторичного цемента в заэвтектоидной стали, подготовки к завершающей термической обработке стали после нормализации.
Близкие процессы
Термическая обработка стали, помимо нормализации, включает отжиг, отпуск, закалку, криогенную обработку, дисперсионное твердение. Цель нормализации, как и принцип осуществления, совпадает с названными технологиями. Поэтому далее проведено сравнение данных процессов.
Отжиг дает более тонкую структуру перлита, так как подразумевает охлаждение в печи. Его применяют в целях снижения структурной неоднородности, напряжения после обработки литьем или давлением, придания мелкозернистой структуры, улучшения обработки резанием.
Принцип закалки аналогичен, за исключением больших температур, чем при нормализации, и повышенной скорости охлаждения, благодаря тому, что его производят в жидкостях. Закалка повышает прочность и твердость, как и нормализация. Однако полученные таким способом детали отличаются хрупкостью и пониженной ударной вязкостью.
Отпуск используется после закалки для сокращения хрупкости и напряжений. Для этого материал нагревают до меньшей температуры и охлаждают на воздухе. С ростом температуры падают предел прочности и твердость, и увеличивается ударная вязкость.
Дисперсионное твердение, относящееся также к окончательной обработке, подразумевает выделение дисперсных частиц в твердом растворе после закалки при меньшем нагреве с целью упрочнения.
Благодаря криогенной обработке материал получает равномерную структуру и твердость. Такая технология особо актуальна для закаленной углеродистой стали.
Применение
Выбор какого-либо из рассмотренных способов обработки определяется концентрацией в стали углерода. Для материалов с величиной данного показателя до 0,2% предпочтительнее использовать нормализацию. Стали с количеством углерода 0,3 — 0,4% обрабатывают и нормализацией, и отжигом. В таких случаях выбор способа осуществляют на основе требуемых свойств материала. Так, нормализация стали придает ей мелкозернистую структуру, большие прочность и твердость в сравнении с отжигом. Кроме того, данная технология является более производительным процессом. Следовательно, при прочих равных условиях она более предпочтительна. Закалке ее предпочитают ввиду хрупкости получаемых таким способом изделий и при обработке предметов с перепадами сечения во избежание дефектов.
Таким образом, нормализацию можно считать промежуточной технологией по отношению к ним: она дает материал большей твердости, чем отжиг, но менее хрупкий в сравнении с закалкой, улучшая структуру и сокращая напряжения. Ввиду этого нормализация получила в машиностроении более обширное распространение.
Нормализация стали – описание процесса и его суть
Большая часть операций, связанных с термической обработкой подразумевает один и тоже алгоритм действий:
нагрев изделия до определенных температур;
выдержку под действием набранной температуру в течение заданного времени;
охлаждение, которое может быть проведено в разных средах и с разной скоростью.
Термообработка деталей может выступать и как промежуточный технологический процесс, и как финишный. В первом случае, через неё проходят те детали, которые еще будут обрабатываться, например, сверла или лопатки авиационных турбин. Второй случай подразумевает то, что после термообработки, готовая деталь получит новые свойства.
Нормализация стали – это один из видов термической обработки металла с последующим его охлаждением на воздухе. Результатом этой операции становится формирование нормализованной структуры стали. Кстати, отсюда и пошло название. Операцию применяют по отношению к поковкам, отливкам и пр. Нормализацию используют для минимизации зерен в структуре стали, образованного сварочным швом.
Суть процесса
Процедура нормализации выглядит следующим образом. Деталь разогревают до температур, которые превышает максимально допустимые параметры (Ас1, Ас3) на 30 – 50 градусов Цельсия, затем, какое-то время ее выдерживают под воздействием этой температуры, после чего ее охлаждают.
Подбор температуры выполняют, руководствуясь маркой стали. Так, сплавы содержащие 0,8 % углерода так называемые заэвтектоидные, обрабатывают при температурах, лежащих между критическими точками Ас1 и Ас3.
Что такое критические точки – так называют температуры, при которых происходят фазовые изменения и структуры сплава при его нагреве или охлаждении.
Результатом этого становиться то, что в твердый раствор попадает некоторый объем углерода и закрепляется аустенита. То есть, на свет появляется структура, состоящая из мартенсита и цементита. Именно цементит приводит к росту стойкости к износу и твердости. Нагрев высокоуглеродистой стали свыше ас3 приводит к тому, что увеличиваются внутренние напряжения. Это происходит из-за того, что растет количество аустенита, в следствии роста концентрации углерода.
Сталь с содержанием углерода менее 0,8% при нагреве свыше критической точки Ас3 приобретает повышенную вязкость. Это происходит потому что в стали этого типа появляется аустенит (мелкозернистый), переходящий в мартенсит (мелкозернистый).
Доэвтектоидная сталь не обрабатывают при температурах, расположенных в диапазоне Ас1 – Ас3. Так как в этом случае появляются феррит, который снижает параметры твердости.
Время необходимое для выполнения операции
Для получения однородной структуры сплава, при определенной температуре, требуется какое-то время. Это время и будет определено как время выдержки стали при нормализации. Опытным путем определено, что слой металла толщиной в 25 мм через час становится однородным. Таким образом. и определяют время нормализации.
Завершающий этап – охлаждение
Скорость охлаждения играет существенную роль в образовании объема перлита и размера его пластин. Многочисленные исследования показали, что высокая интенсивность охлаждения увеличивает количество перлита и сталь получает повышенную твердость и прочность. Малая интенсивность охлаждения приводит к тому, что сталь теряет твердость и прочность.
При обработке деталей с существенными перепадами размеров, например. валов, целесообразно убрать напряжения, возникающие под воздействием колебания температур. Для этого их предварительно нагревают в емкости, заполненной разными солями. При понижении температуры допускается ускорить этот процесс помещая горячие детали в воду или специально подобранное масло.
Другими словами, нормализация стали устраняет напряжения внутри детали, минимизирует ее структуру. То есть она оказывает прямое влияние на изменение микроструктуры стальных сплавов.
Использование нормализации
Эту форму термической обработки применяют для достижения разных целей. Так применение нормализации может повысить или снизить твердость стального сплава, вязкость и прочностные характеристики. Этот способ термической обработки используют тогда, когда надо улучшить обрабатываемость стали разными методами – резание, штамповка и пр.
Детали, получаемые методом литья проходят нормализацию в целях получения гомогенизированной структуры и устранению внутренних напряжений. То же самое можно и сказать о деталях, полученных после обработки ковкой. То есть нормализация служит для получения однородной структуры металла и устранению внутренних напряжений. Кроме того, этот процесс может быть использован, как замена закаливания изделий со сложным профилем. Кроме, названных результатов процесса нормализации можно добавить и такие как минимизация зерен в структуре сплава, удаление вторичного цементита, повышения обрабатываемости стали.
Близкие по сути процессы термообработки
В перечень термообработки сталей, помимо нормализации, можно внести операции:
отжиг;
отпуск;
закаливание;
криогенная обработка и несколько других.
Операция отжига обеспечивает качественную, более тонкую структуру перлита, это происходит потому, что охлаждения деталей применяют печи. Назначение этой операции — понижение неоднородности структуры, удаления напряжений, повышение обрабатываемости.
Основы, заложенные в операцию закаливания, идентичны принципам нормализации, но существуют некоторые различия. Например, при закаливании применяют температуры куда как выше и высокие скорости охлаждения. Закаливание проводит к улучшению прочностных характеристик, твердости и пр. Но, нередко заготовки прошедшие через закаливание отличает сниженная вязкость и высокая хрупкость.
Отпуск деталей применяют после операции закаливания. Отпуск снижает хрупкость и внутренние напряжения. При этом диапазон температур ниже, чем тот, который используют в нормализации. Охлаждение деталей проводят на воздухе. При повышении температуры снижается предел прочности, твердость и в то же время растет ударная вязкость.
Криогенная обработка стали приводит к получению равномерной структуры металла и повышенной твердость. Эту технологию обработки применяют в отношении прошедшей закаливание углеродистой стали.
Нормализация и её применение в практической деятельности
При назначении способа термообработки технолог должен учитывать концентрацию углерода. Стали, в которых содержание углерода не превышает 0,4%, могут быть обработаны и нормализацией и отжигом. Нормализация минимизирует размер зерен в структуре и повышает прочностные характеристики.
Сравнивая затраты времени между нормализацией и другими методами можно сделать вывод, что обработка другими способами, длится больше времени.
За счет скорости выполнения операции, охват большого количества сталей, качеством получаемых параметров (твердость, прочность и пр.), именно поэтому нормализацию широко применяют в машиностроении.
Цели и принципы нормализации стали
Нормализация стали – это технологический процесс термического характера, назначение которого в улучшении показателей стали разных марок. Узнайте, как меняется структура и свойства металлов после нормализации, какие температуры используют при обработке.
Качество стали определяется структурой ее кристаллической решетки. В процессе термической обработки в некоторых случаях однородность зерна металла может нарушаться, возникают пороки и внутренние напряжения. Чем больше таких негативных моментов, тем сорт материала будет ниже. Чтобы повысить сортовые характеристики (сделать металл более прочным и твердым), применяют процесс под названием нормализация стали. Этот вид обработки тоже относится к термическим.
Чаще всего такой вид обработки в технологической цепочке занимает промежуточное положение, но иногда для получения сортового проката его применяют на окончательном этапе. Нормализации можно подвергать высокоуглеродистые, среднеуглеродистые и малоуглеродистые стали, а также инструментальные материалы и изделия из низколегированного металла. В каждом конкретном случае нормализацией достигают того или иного изменения, связанного с улучшением параметров.
Цели и назначение нормализации
Нормализация имеет несколько назначений – нельзя рассматривать ее только как способ увеличить твердость стали. В некоторых случаях с помощью этого процесса добиваются обратного эффекта по твердости, а также могут снижать прочность и ударную вязкость металла. Здесь важно понимать, что любая сталь имеет механическую и термическую историю.
Основной целью нормализации является достижение эффекта нивелирования напряжений, которые возникли в структуре материала по тем или иным причинам. В результате сталь легче обрабатывать разными способами, и она получает дополнительные характеристики в результате обработки.
Если взять, к примеру, стальные отливки, то обработка методом нормализации позволит получить гомогенизацию кристаллической структуры, снизить остаточные напряжения и повысить способность к термическому упрочнению.
Стальные предметы, которые были получены методом давления, после проведения прокатки и ковки подвергают нормализации с целью уменьшить полосчатость и разнозернистость структуры соответственно.
Еще одно свойство нормализации: она позволяет переводить крупнозернистую структуру металла в более мелкое состояние. Такая обработка улучшает способность к закалке, обработке при помощи резания, позволяет удалять сетку так называемого вторичного цемента в стали заэвтектоидной. Все это способствует подготовке изделия к термической обработке последнего этапа технологического процесса.
Процесс нормализации и основные принципы
После достижения точки Ас3 наблюдается завершение фазы, когда происходит преобразование в аустенит феррита с одновременной нормализацией структуры полученного вещества. За преодолением порога Асm следует процесс, где уже из аустенита начинает выделяться цементит вторичный (если температура идет в сторону уменьшения) и прекращается его растворение в аустените (при увеличении температуры относительно этой точки).
Не стоит путать нормализацию с отжигом: у каждого процесса есть свои особенности. При нормализации стали охлаждение происходит в два раза быстрее. С экономической точки зрения такой процесс более рентабелен, так как не требует применения печи для постепенного охлаждения.
Метод нормализации стали не всегда можно применять по отношению к некоторым маркам стали, потому что после такой обработки у них остается повышенная твердость, которая не во всех случаях нужна. Это касается тех металлов, где содержание углерода превышает показатель в 0.4 %. В низкоуглеродистых сталях этот эффект, как правило, не наблюдается. Выходом из ситуации может быть применение высокого отпуска после нормализации при температурном режиме в 650–700 градусов по Цельсию.
Оборудование и материалы
Камеру. Это специальный, герметично закрывающийся бокс, где располагают заготовки.
Нагревательные элементы в виде горелок. Предназначены для нагнетания температуры в камере печи. Горелки могут быть плоско-факельного типа, работать по принципу косвенного или прямого нагрева.
Модули управления мощностью. Они могут быть комбинированного типа, пропорциональные или импульсные.
Теплоизоляционный материал.
Принцип нагрева внутренней камеры печи от газа может быть реализован через воздушное пространство, тогда горелку располагают в центре. Также могут применяться регенерационные и рекуперационные конструкции горелок.
В печах сопротивления, где используется косвенный метод нагрева, нагревательная система может быть выполнена по разным принципам. Чаще всего здесь используют тиристорные схемы для управления мощностью, которые в свою очередь контролируются при помощи микропроцессорных схем.
Уважаемые посетители сайта, все, кто разбирается в технологическом процессе выполнения операций по нормализации стали, оставьте свои дополнения к статье в комментариях!
Нормализация
Отжиг
Практика термической обработки стали
Различают следующие виды термообработки: отжиг, нормализация, закалка и отпуск стали.
Отжиг – это нагрев стали выше температур фазовых превращений, выдержка и последующее медленное охлаждение, обычно с печью. После отжига сталь приближается к фазовому и структурному равновесиям, отображенным на диаграмме Fe–Fe3C.
Поэтому после любого отжига структура будет та же, что и на диаграмме железо-цементит (см. п. 5.3):
· у доэвтектоидных сталей – перлит и феррит;
· у эвтектоидной стали – перлит;
· у заэвтектоидных сталей – перлит и цементит вторичный.
В зависимости от температуры нагрева отжиг подразделяется на диффузионный, полный, изотермический, рекристаллизационный и неполный.
Диффузионный отжиг (гомогенизация) – это нагрев стали до температуры 1100…1200 ⁰С, выдержка (минимальная – около 16 часов), и последующее медленное охлаждение с печью. Применяется в основном для легированных сталей и крупных фасонных отливок (слитков) из углеродистой стали с целью выровнять химический состав по углероду и легирующим элементам, а, следовательно, и механические свойства по всему объему слитка (чем выше температура, тем выше диффузия). После диффузионного отжига получаем структуру, состоящую из перлита и феррита, но при этом зерна будут крупными, что понижают ударную вязкость, а это нежелательно. Поэтому после диффузионного отжига нужно измельчать зерно.
Способы измельчения зерна. Зерно в стали измельчается при нагреве в момент перехода перлита в аустенит. Скорость же охлаждения на величину зерна не влияет. Поэтому зерно в стали измельчают: 1) полным отжигом; 2) нормализацией; 3) закалкой; 4) пластической деформацией, при которой измельчение зерен происходит механически, путем дробления.
Полный отжиг – это нагрев доэвтектоидной стали выше Aс3 на 30…50 ⁰С (рис. 6.1), выдержка и последующее медленное охлаждение с печью. Выше нагревать нельзя, поскольку в этом случае слишком вырастает зерно аустенита. После такого отжига получается мелкозернистая структура, состоящая из перлита и феррита, с повышенной ударной вязкостью.
Рис. 6.1. Диапазон оптимальных температур нагрева
при различных видах термообработки
Полный отжиг применяется:
· для измельчения зерна и повышения ударной вязкости после диффузионного отжига, литья, сварки, а также после горячей прокатки и ковки (1100…1200 ⁰С);
· для смягчения стали перед обработкой резанием, так как перлит намного мягче мартенсита;
· для снятия внутренних напряжений.
Полный отжиг – это, как правило, подготовительная операция перед окончательной термической обработкой.
Полный отжиг для заэвтектоидной стали, то есть нагрев выше Acm , не применяют, так как: а) образуется крупное зерно; б) появляется хрупкая сетка вторичного цементита по границам зерен.
Медленное охлаждения в печи при полном отжиге способствует выделению избыточного феррита в виде отдельных скоплений, то есть зерен. Образование таких участков (зерен) феррита нежелательно, так как при последующем нагреве под закалку трудно обеспечить выравнивание концентрации углерода по всему объему аустенита. Это может привести к образованию после закалки участков с пониженной твердостью. Поэтому полному отжигу чаще всего подвергаются прокат, поковки, фасонные отливки, а также слитки легированных сталей для понижения твердости с целью облегчения их прокатки.
Изотермический отжиг – это разновидность полного отжига, применяется в основном для легированных сталей с целью сокращения времени отжига.
И при полном и изотермическом отжиге детали нагревают до температур выше Ac3 на 30…50 ⁰С и дают выдержку – для прогрева деталей и окончания фазовых превращений перлита и феррита в аустените. Если затем проводят полный отжиг, то охлаждения деталей ведут в той же печи. Если проводят изотермический отжиг, то детали из первой печи быстро перебрасывают во вторую печь с температурой, соответствующей изотермической выдержке. При этом получается более твердая структура сорбита или троостита, детали обрабатываются резанием хуже, но есть выигрыш во времени и меньше внутренние напряжения, так как перлитное превращение на поверхности и в сердцевине идет более или менее равномерно, и нет резких концентратов напряжений.
Изотермическому отжигу подвергают прокат, штамповки, заготовки инструмента и другие изделия небольшого размера. Нагрев чаще всего проводится в защитных средах, чтобы избежать окисления и выгорания углерода с поверхности деталей. Если, например, длительность обычного отжига мелкосортного проката быстрорежущей стали составляет около 30 часов, то изотермический отжиг продолжается 8…10 часов.
При отжиге очень крупных изделий или заготовок не удается их быстро и равномерно по объему охладить до температуры изотермической выдержки. В этом случае превращение в отдельных местах деталей протекает при разных температурах, что приводит к неравномерной структуре и твердости.
Рекристаллизационный отжиг – это нагрев холоднодеформированной стали выше температуры рекристаллизации, выдержка при этой температуре и последующее охлаждение. Цель отжига – устранение наклепа и повышение пластичности. Этот вид отжига применяют перед холодной обработкой давлением и как промежуточную операцию для снятия наклепа между операциями холодного деформирования. В некоторых случаях рекристаллизационный отжиг используют и в качестве окончательной термообработки.
Температура рекристаллизационного отжига стали зависит от ее состава. С увеличением содержания углерода и легирующих элементов в стали температура рекристаллизационного отжига повышается. Чаще всего температура такого отжига находится в интервале 650…750 ⁰С (рис. 6.1).
Неполный отжиг – это нагрев доэвтектоидных и заэвтектоидных сталей выше Aс1 на 30…50 ⁰С, выдержка и последующее медленное охлаждение с печенью. Структура после такого отжига такая же, как на диаграмме железо-цементит.
Доэвтектоидные стали. Неполный отжиг применяют для смягчения стали перед обработкой резанием, снятия внутренних напряжений и частичного измельчения зерна (зерно измельчается только за счет перлита, а феррит при этом не принимает участие). Этот отжиг проводят тогда, когда горячая обработка давлением проведена правильно и не привела к резкому укрупнению зерна. Неполный отжиг по сравнению с полным отжигом дешевле, и сталь меньше окисляется.
Заэвтектоидные стали. Неполный отжиг применяют вместо полного отжига для измельчения зерна, так как вторичного цементита очень мало, а в структуре находится в основном перлит. Кроме того, неполный отжиг применяют для получения зернистого перлита, и тогда этот отжиг называют циклическим или отжигом сфероидизацией, так как пластичный цементит в перлите приобретает зернистую форму.
Процесс сфероидизации заключается в следующем. При нагреве от 680…760 ⁰С и выдержке перлит превращается в аустенит в ходе эвтектоидной реакции. При этом феррит очень быстро переходит в аустенит (полиморфное превращение), а цементит затем медленно растворяется в образовавшемся аустените, причем растворение идет преимущественно по углам и ребрам пластинки, где атомам легче всего оторваться.
При охлаждении от 760 ⁰С до 680⁰С и выдержке идет обратный процесс, то есть вновь выпадает цементит, но уже преимущественно по граням пластинки (округление пластинки цементита в перлите). И так повторяют несколько раз. В результате получаем зернистый перлит, то есть на фоне феррита расположены не пластинки, а зерна цементита (рис. 6.2).
Рис. 6.2. Микроструктура заэвтектоидной стали после сфероидизации: на светлом фоне (феррит) – зёрна цементита (Fe3C)
Сталь с зернистым перлитом имеет более низкую твердость и прочность по сравнению с пластичным перлитом, но зато более высокую ударную вязкость. Кроме того, сталь с зернистым перлитом менее склонна к перегреву (к росту зерна при нагреве), короблению и трещинообразованию при последующей закалке. Для устранения хрупкости сетки вторичного цементита перед неполным отжигом производят нормализацию.
Отжигу на зернистый перлит подвергаются также низко- и среднеуглеродистые стали для повышения пластичности перед холодной штамповкой или волочением.
Нормализация – это нагрев доэвтектоидных сталей выше Ас3 , а заэвтектоидных выше Аcm на 50…60 ⁰С (рис. 6.1), выдержка и последующее охлаждение на спокойном воздухе. Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупнозернистую структуру, полученную при литье, горячей прокатке, ковке и штамповке. После нормализации структура сильно зависит от толщины стенки изделия. Для изделий средних размеров получаем следующие структуры.
Доэвтектоидные стали – сорбит пластинчатый и избыточный феррит. Причем с увеличением углерода в стали количество избыточного феррита становиться все меньше, а в сталях 0,6% углерода и выше его совсем не будет, то есть получим квазиэвтектоид, и твердость при этом на 10…15% повышается.
Эвтектоидная сталь – сорбит пластинчатый.
Заэвтектоидные стали – сорбит пластинчатый и вторичный цементит. Но этот цементит хрупкую сетку по границам зерен не дает, так как охлаждение по сравнению с отжигом ускоренно, то есть не в печи, а на воздухе.
Нормализация по сравнению с отжигом обеспечивает более высокую твердость и прочность, а, вследствие измельчения зерна, сохраняет достаточную пластичность и вязкость. Поэтому нормализация очень широко применяется в машиностроении как окончательный вид термообработки.
Применение. Для низкоуглеродистых сталей (до 0,3% С) – (у них в структуре много мягкого феррита, а перлита или сорбита очень мало) нормализация применяется вместо полного отжига. Это дешевле и проще, так как охлаждение проходит на воздухе. При этом твердость будет немного выше, но поверхность при обработке резанием будет чище. Для высокоуглеродистых сталей применять нормализацию вместо полного отжига нельзя, так как будет слишком много сорбита и обработка резанием будет затруднена;
Для среднеуглеродистых сталей (0,3…0,5% С) нормализацию применяют вместо улучшения, когда получают структуру сорбит отпуска зернистый с повышенной ударной вязкостью. Улучшение – это дорогой вид обработки, и применяется для ответственных деталей автомобиля, работающих с высокими ударными нагрузками (шатун, коленчатый вал и др.). Если же деталь работает с невысокими ударными нагрузками, то дешевле применять нормализацию (охлаждение на воздухе), но при этом получают сорбит пластинчатый, у которого вязкость ниже.
Для заэвтектоидных сталей нормализация применяется для разрушения хрупкой сетки вторичного цементита перед закалкой и неполным отжигом.
Дата добавления: 2014-12-26 ; Просмотров: 3178 ; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Обычная нормализация металла
Нормализация металла – один из видов термической обработки сплавов (стали). Изделие нагревается выше (на 30-50 градусов) критических температур Аст (Асз) до полной перекристаллизации. Структура стали изменяется, становится однородной и мелкозернистой. Медленное охлаждение металла на воздухе обходится вдвое быстрее, чем при отжиге и гораздо дешевле.
Охлаждение при отжиге выполняется в печи, поэтому нормализация стали более выгодный вариант термической обработки. Так как после нормализации и отжига разница в характеристиках металла отсутствует, многие предприятия при обработке низкоуглеродистой стали отдают предпочтение нормализации изделия.
В среднеуглеродистых (0,3—0,6%) и высокоуглеродистых изделиях после нормализации сталь получит повышенную твердость. Её структура будет состоять из сорбитообразного перлита и свободного феррита (его количество зависит от углеродного содержания). Такие виды стали рекомендуется отжигать. Но возможен и такой вариант термической обработки изделия: вначале высокоуглеродистую сталь подвергают нормализации, а потом (температура 650-700 градусов) осуществляется высокий отпуск, уменьшающий её твердость.
Таким образом, для первого вида стали нормализация способна заменить отжиг, для второго – закалку с высоким отпуском.
Предназначение нормализации металла
Нормализация изделия используется для:
Подготовки к закалке структуры металла;
Устранения наклепа и внутренних напряжений;
Получения мелкозернистой структуры в поковках (отливках).
Подобная термическая обработка позволяет исправить структуру металла, перегретого при горячей обработке или в процессе отжига. Примером может служить заэвтектоидная сталь. В её структуре цементит (имеет вид сетки) размещается по границам зерен, а это ухудшает её механические свойства.
Суть процесса нормализации
Внутренние напряжения бывают термическими или структурными. Первые возникают после неравномерного нагрева и разной скорости охлаждения деталей. Вторые появляются в результате структурных превращений внутри детали. Достигая большой величины и складываясь с напряжениями, возникающими при работе, внутренние напряжения могут разрушить металл (превышается предел прочности).
Устранить их можно специальным отжигом. Он осуществляется при температуре, которая ниже температуры рекристаллизации. Повышенная температура позволяет перераспределять дислокации. Они перемещаются из областей, где наблюдается повышенный уровень внутренних напряжений, в места с пониженным уровнем. Операция, длящаяся несколько часов, осуществляется разрядку внутренних напряжений.
Спокойный воздух способствует скорости охлаждения в 150—250 град/час. Если требуется нормализовать массивные изделия, скорость выбирается, исходя из размеров стали и её состава. Увеличенная скорость нагрева, минимальные температуры и время выдержки позволят получить более мелкое зерно аустенита и дисперсную смесь перлита (сорбита с ферритом).
Достоинствами нормализации стали являются простота (не нужна печь для охлаждения) и экономичность (на операцию затрачивается меньше времени и энергии). Для одних видов стали нормализация будет окончательной термической обработкой (производство швеллеров, уголков, рельсов), для других – предварительной операцией.
Для заказа услуг по нормализации металла Вы можете обратиться прямо сейчас, заполнив форму обратной связи или позвонив нам по телефонам, указанным на сайте.
ОСТАВИТЬ ЗАЯВКУ
Новости. Приведена в соответствие требованиям термической обработки Закалочная среда ПК-М.
Приведена в соответствие требованиям термической обработки Закалочная среда ПК-М. Концентрация среды была выполнена прибывшими по нашему техническому заданию специалистами производителя данной среды ЗАО «Политерм -Тюмень». В результате корректирующих мероприятий, испытания признаны положительными. Решением комиссии Закалочный бак ВЗ 15.100.15/0,8П, признан годным к эксплуатации.
18 октября 2014
Новости. Монтаж и пуско-наладка термического оборудования
Специалисты компании «Накал-Промышленные печи» благополучно закончили монтаж и пуско-наладку термического оборудования.
20 октября 2014
Новости. ЗАО “Нелидовский завод гидравлических прессов” закончил монтаж оборудования по спец заказу ПЗТО
ЗАО “Нелидовский завод гидравлических прессов” закончил монтаж и пуско-наладку вновь изготовленного оборудования по специальному заказу ООО «ПЗТО».