- Что прочнее титана
- Топ 10 самых прочных металлов в мире
- 10. Титан
- 9. Уран
- 8. Вольфрам
- 7. Рений
- 6. Осмий
- 5. Бериллий
- 4. Хром
- 3. Тантал
- 2. Рутений
- 1. Иридий
- Toyota Altezza ‘SPORT supercharged. › Бортжурнал › Всё, что необходимо знать о металле ТИТАН (Ti)…
- Самые прочные металлы в мире: топ-10
- 10. Тантал
- 9. Бериллий
- 8. Уран
- 7. Железо и сталь
- 6. Титан
- 5. Рений
- 4. Хром
- 3. Иридий
- 2. Осмий
- 1. Вольфрам
- Таблица предела прочности металлов
- Сплавы против металлов
- Топ 10 самые прочные металлы в мире
- 10. Титан
- 9. Уран
- 8. Вольфрам
- 7. Рений
- 6. Осмий
- 5. Бериллий
- 4. Хром
- 3. Тантал
- 2. Рутений
- 1. Иридий
- Мифы о титане
Что прочнее титана
Топ 10 самых прочных металлов в мире
Металлы в обыденной жизни стали применять в древности. Медь была первым элементом, который начал использовать человек, так как в природе её было просто найти, и она легко обрабатывалась. Неслучайно археологами найдены многочисленные предметы, сделанные из меди. В ходе своего развития люди научились делать сплавы, из которых изготавливались орудия труда, а затем и оружие. В наши дни проводятся исследования для выявления прочнейших металлов. Давайте узнаем больше о свойствах и использовании десяти самых прочных металлов в мире.
10. Титан
Его называют металлом будущего, поскольку окончательное его место в жизни людей пока не определено. Человек быстро оценил его лучшие качества. Титан лёгкий и высокопрочный, устойчивый к высоким температурам, отличается низкой плотностью, стойкостью к коррозии. Сферы применения: авиационная техника и ракетная отрасль, судостроение. Титановые сплавы имеют большие перспективы применения, но сдерживаются его высокой стоимостью и недостаточной распространённостью.
9. Уран
Наиболее распространенный металл, отличается большой прочностью, в привычных условиях слабо радиоактивен. Обнаружение учёными урана считается открытием планетарного масштаба. Наделен парамагнитными свойствами, гибкий, ковкий и относительно пластичный, благодаря таким качествам нашёл применение в разнообразных производственных сферах: является основой для ядерного оружия, соединения урана используются в производстве стекол, в качестве красителей.
8. Вольфрам
Характеризуется высокой тугоплавкостью, также принадлежит к прочнейшим металлам на планете Земля. Являясь твёрдым элементом бело-серого цвета с характерным блеском, вольфрам высокопрочный, тугоплавкий, устойчив к воздействию кислотной и щелочной среды. Наделен ковкостью, при повышении температур W саморазогревается, а также растягивается в тоненькую нить, используемую в лампах.
7. Рений
Парамагнитный рений, один из более «тяжёлых» элементов высокой плотности (21.03 г/см3). На земле RE существует в чистом виде, особенно значительно содержание в виде примеси в молибдените до 0,5%. Ярко выраженными свойствами RE считаются высочайшая прочность, жаростойкость, характеризуется тугоплавкостью, стойкостью к окислению, пластичностью, малой коррозией при воздействии многих химических веществ. Рений — дорогостоящий металл. Сферы применения многообразны: электроника, ракетостроение, авиастроение (например, производство запчастей для сверхзвуковых истребителей), металлургическая отрасль, медицина, судостроение.
6. Осмий
Металл серебристо-светлой окраски, отливающий голубизной. Входя в группу платиноидов, считается одним из более плотных элементов. Характеризуется твёрдостью. Os является хрупким металлом, но при этом характеризуется устойчивостью к механическому воздействию и влиянию кислой среды. Учёными засвидетельствовано присутствие осмия в металлических метеоритах. Образуя идеальный состав с другими элементами, получил широкое использование в медицине, электронике, химии и нефтехимии, ракетостроении, нашёл широкое применение при производстве ручек.
5. Бериллий
Металл серого цвета с серебристым оттенком, приобретающий при соприкосновении с воздухом матовый оттенок по причине образования оксидной плёнки. Металл, характеризующийся твёрдостью, высоко токсичный. В отличие от других металлов прекрасно проводит тепло и характеризуется низким электрическим сопротивлением. Обладая уникальными свойствами, Be получил применение в авиакосмической области, ракетостроении, ядерной энергетике, металлургической промышленности, атомной энергетике, лазерной технике. Учитывая высокую твёрдость Ве, его применяют для получения легирующих сплавов, материалов, отличающихся своими огнеупорными качествами.
4. Хром
Хром – металл бело-голубого цвета. Характеризуется высокой прочностью, твёрдостью, ярко выраженными магнитными свойствами, не подвергается водородному охрупчиванию, стойкий к влиянию кислотной и щелочной среды. Его используют, создавая различные сплавы, а те в свою очередь востребованы для изготовления медоборудования. Кроме того, Cr применяется при синтезе искусственных рубинов, соли хрома четырехвалентного используют для сохранения древесины и дубления кож.
3. Тантал
Тантал входит в тройку прочнейших элементов на земле. Его характеризуют серо-металлический цвет с серебристым блеском, высокая твёрдость и атомная плотность. Образующаяся сверху оксидная плёнка придаёт ему свинцовый отлив. Несмотря на высокую твёрдость и прочность, это металл характеризуется пластичностью, и по такому качеству сравним с золотом. Металл тугоплавкий, стойкий к коррозии и окислению. Нашел активное применение в металлургии, строительстве энергетических установок, химической отрасли.
2. Рутений
Имя 2-го по прочности металла на древнем языке означает – Россия. Металл имеет серебристый цвет, относится к платиноидам, содержится в тканях мышц у всех живущих на земле существ. Высокопрочный металл, твёрдый, тугоплавкий, обладает стойкостью к воздействию химических веществ, способен образовывать комплексные соединения. Рутений используется в космической отрасли, медицине, электронике, в качестве добавки, придающей золоту чёрный цвет.
1. Иридий
Лидером среди всех металлов, обладающих высокой прочностью, считается Иридий. Твёрдый и тугоплавкий элемент серо-белого цвета принадлежит к платиноидам. Сегодня на поверхности Земли почти не встречается, но нередко встречается в соединениях с осмием. По причине твердости воздействие на металл затруднено, а значит и обработка, стоек под влиянием химических веществ. Его значение в обыденной жизни весьма велико. Иридий используется для придания таким металлам, как титан, хром и вольфрам лучшей устойчивости к влиянию кислотной и щелочной среды. Применяется для изготовления термопар, топливных баков, термоэлектрических генераторов, в медицине, нашёл широкое применение для сплавов с платиной у ювелиров.
Toyota Altezza ‘SPORT supercharged. › Бортжурнал › Всё, что необходимо знать о металле ТИТАН (Ti)…
Основные сведения:
-Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
История открытия:
-Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.
Свойства титана:
-В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью. Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности. Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником. Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Физические и механические свойства:
Марки титана и сплавов:
-Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св. В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо. Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С. Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С. Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.
Достоинства / недостатки:
— Достоинства:
-малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
-высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые -сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
-необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности -тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
-удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
— Недостатки:
-высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
-активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, -составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
-трудности вовлечения в производство титановых отходов;
-плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
-высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
-плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
-большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.
Области применения:
-Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла. Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.
-Удачной Вам эксплуатации и спасибо за внимание! Надеюсь, что помог Вам!
-С уважением DrPavlov.
Самые прочные металлы в мире: топ-10
Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.
Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие — настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.
А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:
- Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
- Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
- Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.
10. Тантал
У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.
Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.
9. Бериллий
А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.
Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.
Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.
8. Уран
Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.
Один из самых твердых металлов в мире имеет два коммерчески значимых применения — ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.
7. Железо и сталь
Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.
Сталь — это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).
6. Титан
Титан — это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.
Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.
Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.
5. Рений
Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.
Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.
Россия — третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.
4. Хром
По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.
Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.
А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).
3. Иридий
Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.
Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.
2. Осмий
Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.
Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.
1. Вольфрам
Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).
Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых — Хуана Хосе и Фаусто д’Эльхуяра — к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.
Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.
Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности — для изготовления ракетных сопел.
Таблица предела прочности металлов
Металл | Обозначение | Предел прочности, МПа |
---|---|---|
Свинец | Pb | 18 |
Олово | Sn | 20 |
Кадмий | Cd | 62 |
Алюминий | Al | 80 |
Бериллий | Be | 140 |
Магний | Mg | 170 |
Медь | Cu | 220 |
Кобальт | Co | 240 |
Железо | Fe | 250 |
Ниобий | Nb | 340 |
Никель | Ni | 400 |
Титан | Ti | 600 |
Молибден | Mo | 700 |
Цирконий | Zr | 950 |
Вольфрам | W | 1200 |
Сплавы против металлов
Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.
Чем выше прочность сплава — тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.
А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.
Топ 10 самые прочные металлы в мире
Использование металлов в повседневной жизни началось на заре развития человечества, и первым металлом являлась медь, поскольку является доступной в природе и легко поддается обработке. Недаром археологи при раскопках находят различные изделия и домашнюю утварь из этого металла. В процессе эволюции люди постепенно учились соединять различные металлы, получая все более прочные сплавы, пригодные для изготовления орудий труда, а позже и оружия. В наше время продолжаются эксперименты, благодаря которым можно выявить самые прочные металлы в мире.
10. Титан
Открывает наш рейтинг титан – высокопрочный твердый металл, который сразу же привлек к себе внимание. Свойствами титана являются:
- высокая удельная прочность;
- стойкость к высоким температурам;
- низкая плотность;
- коррозийная стойкость;
- механическая и химическая стойкость.
Титан применяется в военной промышленности, медицине авиации, кораблестроении, и других сферах производства.
9. Уран
Самый известный элемент, который считается одним из самых прочных металлов в мире, и в нормальных условиях представляет собой слабый радиоактивный металл. В природе находится как в свободном состоянии, так и в кислых осадочных породах. Он достаточно тяжел, широко распространен повсеместно и обладает парамагнитными свойствами, гибкостью, ковкостью, и относительной пластичностью. Уран применяется во многих сферах производства.
8. Вольфрам
Известен как самый тугоплавкий металл из всех существующих, и относится к самым прочным металлам в мире. Представляет собой твердый переходный элемент блестящего серебристо-серого цвета. Обладает высокой прочностью, отличной тугоплавкостью, стойкостью к химическим воздействиям. Благодаря своим свойствам поддается ковке, и вытягивается в тонкую нить. Известен в качестве вольфрамовой нити накаливания.
7. Рений
Среди представителей данной группы считается переходным металлом высокой плотности серебристо-белого цвета. В природе встречается в чистом виде, однако встречается в молибденовом и медном сырье. Отличается высокой твердостью и плотностью, и имеет отличную тугоплавкость. Обладает повышенной прочностью, которая не теряется при многократных перепадах температур. Рений относится к дорогим металлам и имеет высокую стоимость. Используется в современной технике и электронике.
6. Осмий
Блестящий серебристо-белый металл со слегка голубоватым отливом, относится к платиновой группе и считается одним из самых прочных металлов в мире. Аналогично иридию имеет высокую атомную плотность высокую прочность и твердость. Поскольку осмий относится к платиновым металлам, имеет схожие с иридием свойства: тугоплавкость, твердость, хрупкость, стойкость к механическим воздействиям, а также к влиянию агрессивных сред. Нашел широкое применение в хирургии, электронной микроскопии, химической промышленности, ракетной технике, электронной аппаратуре.
5. Бериллий
Относится к группе металлов, и представляет собой элемент светло-серого цвета, обладающий относительной твердостью и высокой токсичностью. Благодаря своим уникальным свойствам бериллий применяется в самых различных сферах производства:
- ядерной энергетике;
- аэрокосмической технике;
- металлургии;
- лазерной технике;
- атомной энергетике.
Из-за высокой твердости бериллий используется при производстве легирующих сплавов, огнеупорных материалов.
4. Хром
Следующим в десятке самых прочных металлов в мире является хром – твердый, высокопрочный металл голубовато-белого цвета, стойкий к воздействию щелочей и кислот. В природе встречается в чистом виде и широко применяется в различных отраслях науки, техники и производства. Хром Используется для создания различных сплавов, которые используются при изготовлении медицинского, а также химического технологического оборудования. В соединении с железом образует сплав феррохром, который используется при изготовлении металлорежущих инструментов.
3. Тантал
Бронзу в рейтинге заслуживает тантал, поскольку является одним из самых прочных металлов в мире. Он представляет собой серебристый металл с высокой твердостью и атомной плотностью. Благодаря образованию на его поверхности оксидной пленки, имеет свинцовый оттенок.
Отличительными свойствами тантала являются высокая прочность, тугоплавкость, стойкость к коррозии, воздействию агрессивных сред. Металл является достаточно пластичным металлом и легко поддается механической обработке. Сегодня тантал успешно используется:
- в химической промышленности;
- при сооружении ядерных реакторов;
- в металлургическом производстве;
- при создании жаропрочных сплавов.
2. Рутений
Вторую строчку рейтинга самых прочных металлов в мире занимает рутений – серебристый металл, принадлежащий к платиновой группе. Его особенностью является наличие в составе мышечной ткани живых организмов. Ценными свойствами рутения являются высокая прочность, твердость, тугоплавкость, химическая стойкость, способность образовывать комплексные соединения. Рутений считается катализатором многих химических реакций, выступает в роли материала для изготовления электродов, контактов, острых наконечников.
1. Иридий
Рейтинг самых прочных металлов в мире возглавляет именно иридий – серебристо-белый, твердый и тугоплавкий металл, который относится к платиновой группе. В природе высокопрочный элемент встречается крайне редко, и часто входит в соединение с осмием. Из-за своей природной твердости он плохо поддается механической обработке и обладает высокой стойкостью к воздействию химический веществ. Иридий с большим трудом реагирует на воздействие галогенов и перекиси натрия.
Этот металл играет важную роль в повседневной жизни. Его добавляют к титану, хрому и вольфраму для улучшения стойкости к кислым средам, применяют при изготовлении канцелярских принадлежностей, используют в ювелирном деле для создания ювелирных изделий. Стоимость иридия остается высокой из-за ограниченного присутствия в природе.
Мифы о титане
Несколько мифов о титане
Отвечаю на самые распространённные высказывания-заблуждения относительно титата и изделий из него.
1. Титан — самый прочный и твердый материал.
Ничего подобного, самый прочный и твердый материал в мире — алмаз. Из распространенных жёстких материалов — очень твёрд карбид вольфрама и многие вольфрамо-молибдено-содержащие сплавы. Это — холодные и тяжелые материалы, практически не поддаются мехобработке точением и фрезерованием и для них применяются ещё более сложные и современные технологии обработки. Собственно говоря, подавляющее большинство самого крепкого металлорежущего инструмента изготавливается из разновидностей комбинаций вольфрама с другими твёрдыми элементами, в том числе инструмента для обработки титана. Вольфрамосодержащие сплавы относятся к твердосплавным материалам. Для изготовления ювелирки практически не применяются, лишь изредка, т.к. для изготовления сложных изделий из вольфрамосодержащих материалов требуются слишком огромные производственные мощности, оправданные только в машиностроении и металлопроизводстве, где такая ювелирка считается не слишком крутым бонусом к основному виду деятельности. Ниже — схема замера твёрдости интендером твердомера, в различных единицах.
2. Титан не царапается.
Царапается, еще как. Правда, различия в царапучести марок — достаточно выраженные и заметны даже простым глазом. На этот параметр влияет химический состав сплава и тип пост-обработки заготовки. Титаны топовых марок, изделия из которых служат во всей своей красе долго, стоят дорого и достать их чрезвычайно трудно. А дешевые марки лежат в продаже на любом складе металлобазы и стоят копейки, но изделия из них выходят и дешевые, но качеством блистать не будут. Однако, стоит отметить, что драгоценные металлы царапаются сильнее минимум вдвое, чем самая дешманская марка титана. Какой-то тип титанового сплава поцарапать легко, какой-то сложнее, какой-то ещё сложнее. В любом случае те, кто утверждают, что титан не царапается — врут. Однако, для улучшения твёрдости поверхности можно наносить на изделия спецпокрытия, которые значительно повысят износостойкость. Картинка «зацарапанной поверхности» прилагается.
3. Титан абсолютно биосовместим.
Почти правда. Однако, всего лишь почти. Существует несколько био-несовместимых (точнее, аллергенных) марок, содержащие вредные примеси (но эти марки достаточно редки и врядли мастеру попадутся именно они, но чем чёрт не шутит), также подобные примеси, вызывающие аллергию, некрозы или как минимум, неприятные ощущения могут встречаться и в дешевых марках из-за заниженного контроля качества состава на производстве («Зачем ведь, спрашивается, проверять эти образцы на биосовместимость, заморачиваться с идеальной очисткой, когда мы собираемся делать из них корпус для термостата космической станции, который к тому же будет находиться снаружи корабля?»). Поэтому перед изготовлением ювелирки и бижутерии порядочный мастер-ювелир всегда отнесёт образец материала на хим.анализ, и только потом предложит клиенту. Ниже- красивая картинка зубного импланта.
4. Изделия из титана должны стоить дешево, ведь титан — очень дешевый материал.
Самое распространённое заблуждение! Титан по сравннию с драгоценными металлами, конечно, стоит недорого, однако:
а) Есть очень большие проблемы в приобретении хороших марок в небольшом количестве, т.к. такой титан продаётся только большими промышленными партиями, а то и вообще не продаётся — дай-то Бог, чтобы вы смогли купить какой-нибудь обрезок из остатков «с барского стола» космической и военной промышленности, авось и повезёт. Самый дорогой титан в мире стоит около 1500 долларов за килограмм, самый дешёвый — около 1500 рублей за килограмм (по данным на 2019 год)
б) Самую большую часть стоимости изделий составляет именно обработка титана, так как она требует наличия уникального дорогостоящего инструмента и большого количества времени, а время — ресурс невосполняемый. Тем более, чем лучше титан, тем дороже инструмент и больше времени уходит на изготовление при соблюдении технологии изготовления изделий. Чтобы сделать качественно, с соблюдением всех допусков и параметров, технологию нарушать нельзя, иначе — брак и впустую потраченный материал. Ведь можно сделать хорошо, и тогда, изделие никак не будет дешёвым, а можно сделать как попало, без претензий на точность, ну или чтобы только создать иллюзию качества. А закрепка камней в титан — отдельная статья геморроя мастера, как выяснилось, разные марки титана требуют разного подхода к закрепке различных вставок, всё не так просто с ним — капризен, пружинит, и требует не совсем ювелирного (а более крутого) и дорогого инструмента при вставке и закрепке. Ниже — видео захватывающей работы пятикоординатного токарно-фрезерного станка — это одна из топовых технологий обработки металла, в том числе и титана. Использование подобных технологий для изготовления ювелирных изделий ну никак не может стоить дёшево. Смотрите.
Запомните, в производстве есть три волшебных слова, три составляющие, позволяющие комбинировать друг друга в различных позициях, однако всегда, всегда одно из слов будет лишним. Это «быстро», «качественно» и «недорого».
5. Чистый титан лучше всего.
Смотря для каких целей и задач. Относительно чистый титан российского и зарубежного реестра стоит дёшево, однако обладает прочностью и твердостью немногим выше золота и серебра, а низкий уровень этих параметров даст зацарапать идеально выведенную поверхность в течении первого дня эксплуатации. Если уж сильные претензии к чистоте материала и предъявляются, то существуют иодидный и аффинированные титаны, однако вы не обрадуетесь цене на них. Ну, а самый распространённый относительно чистый и «простенький» титан применяется, в основном для удешевления бижутерной продукциии, не претендующей на качество поверхности, при создании очень сложных геометрических форм, или в случае использования его в технологии литья или какой-либо другой, не слишком дорогостоящей технологии обработки.
Касательно преимуществ и уникальности титановых сплавов, то стоит однозначно отметить их стойкость к коррозии (какие-то больше, какие-то меньше, но в бьтовых средах титан, как правило, не корродирует), при их лёгкости, высокой прочности, относительно высокой, а иногда и очень высокой твердости и практически абсолютной биосовместимости (см. выше). Титан не темнеет, не тускнеет со временем, не окисляется в агрессивных моющих химикалиях, а хорошо изготовленные изделия из качественного титана выглядят великолепно, некоторые из них — действительно плохо царапаются и долго служат своим превосходным внешним видом.