Что такое прокатка металла
Elton-zoloto.ru

Драгоценные металлы

Что такое прокатка металла

Процесс прокатки металла

Процесс формообразования металлов в полуфабрикаты или готовые формы путем прохождения между валками называется прокаткой. Завальцовка наиболее широко используемый процесс формирования металла. Она использована для того, чтобы преобразовать слитки металла к простым элементам таким как заготовки, слябы, листы, плиты, прокладки и прочие.

При прокатке металл пластически деформируется путем пропускания его между роликами, вращающимися в противоположном направлении. Основной задачей прокатки является уменьшение толщины металла. Обычно наблюдается незначительное увеличение ширины, так что уменьшение толщины приводит к увеличению длины.

Операция прокатки

Прокатка производится как в горячем, так и в холодном состоянии. Он выполняет в прокатных станах. Прокатный стан — это сложная машина, имеющая два или более рабочих ролика, опорные ролики, валковые клети, приводной двигатель, редуктор, маховик, сцепное устройство и т.д.

Ролики могут быть простыми или рифлеными в зависимости от формы проката. Металл постепенно меняет свою форму в течение периода, в котором он находится в контакте с двумя роликами.

Ассортимент продукции, которую можно производить методом прокатки, очень велик. Прокатка является более экономичным методом деформирования, чем ковка, когда требуется металл в длинных отрезках однородного поперечного сечения.

Он является одним из наиболее широко используемых среди всех процессов металлообработки, из-за его более высокой производительности и более низкой стоимости. Обычно прокатываемые материалы — это сталь, медь, магний, алюминий и их сплавы.

Последовательность операций, связанных с производством проката.

1) первичная прокатка:

Основная завальцовка использована для того, чтобы преобразовать слиток металла к простым элементам таким как плиты. Этот процесс уточняет структуру отливаемого слитка, улучшает его механические свойства и устраняет скрытые внутренние дефекты.

2) горячая прокатка:

Слябы полученные от первичной завальцовки, снова преобразованной в плиты, листы, штанги и структурные формы, процессом горячей завальцовки.

3) холодная прокатка:

Холодная прокатка обычно представляет собой процесс отделки, в котором изделия, изготовленные горячей прокаткой, получают окончательную форму. Эти процессы обеспечивают хорошую поверхностную отделку, более близкие допуски на размеры и увеличивают механическую прочность материала.

Сталь, которую мы получаем из переплавочного цеха или с заводов по производству стали, в основном представлена в виде слитков. Слитки имеют примерно квадратное поперечное сечение 1,5 м х 1,5 м и весят в тоннах.

Эти слитки сначала нагревают до температуры около 1200°C в нагревательных ямах, а затем пропускают через ролики для получения промежуточных форм. Вышеупомянутый элемент имеет приблизительно следующие размеры:

Литые слитки-1,5 м х 1,5 м (прямоугольное поперечное сечение)

Слябы-ширина: 500 до 1800 мм (прямоугольное поперечное сечение) толщина: 50 до 300 мм

Заготовки-от 30 мм до 150 мм квадратной формы.

Плиты-6 мм и более толщиной, шириной 1200-1400 мм, длиной 6000 мм.

Листы-толщина от 0,5 мм до 5,0 мм

Ширина полосы: 750 мм или менее. (Узкая плита или лист).

Последовательность операций при прокатке бруса

Прокатка — это процесс, который заключается в пропускании металла через зазор между роликами, вращающимися в противоположном направлении. Этот зазор меньше толщины обрабатываемой детали. Поэтому, ролики обжимают металл при одновременном переносе его вперед из-за трения на интерфейсах ролик-металла.

Когда заготовка полностью проходит через зазор между роликами, она считается полностью обработанной. В результате толщина заготовки уменьшается, а ее длина и ширина увеличивается.

Однако увеличение ширины незначительно и обычно игнорируется. Уменьшение толщины называется уклоном, тогда как увеличение длины называется абсолютным удлинением. Увеличение ширины известно как абсолютный разброс.

Смазка использована в процессе завальцовки для уменьшения трения между кренами и металлом, которые нужно свернуть. Трение играет очень важную и полезную роль в процессе прокатки. Фактически оно отвечает за перемещение работы вперед между валками и поэтому не должен устраняться или сокращаться ниже соответствующего уровня. Это является важным соображением при выборе смазки для процесса прокатки.

При холодной прокатке стали используют жидкие смазочные материалы с низкой вязкостью, парафин подходит для цветных материалов, таких как алюминий, медь и ее сплавы, чтобы избежать окрашивания в процессе последующей термической обработки. В то время как горячая прокатка часто проводится без смазочных материалов, но с потоком воды для получения пара и разрушения образовавшихся чешуек. Иногда в качестве смазочного материала используют эмульсию графитовой смазки.

Прокатка

Прока́тка — процесс пластического деформирования тел на прокатном стане между вращающимися приводными валками (часть валков может быть неприводными). Слова “приводными валками” означают, что энергия, необходимая для осуществления деформации, передаётся через валки, соединённые с двигателем прокатного стана. Деформируемое тело можно протягивать и через неприводные (холостые) валки, но это будет не процесс прокатки, а процесс волочения.

Прокатка относится к числу основных способов обработки металлов давлением. Прокаткой получают изделия (прокат) разнообразной формы и размеров. Как и любой другой способ обработки металлов давлением прокатка служит не только для получения нужной формы изделия, но и для формирования у него определённой структуры и свойств.

Содержание

История

Технология прокатки в античности не применялась. Появление прокатки относится к послесредневековым временам (первое известное упоминание относится к XVI веку и содержится в бумагах Леонардо да Винчи [1] ); вначале с помощью прокатки изготавливались медные листы для картин (такие листы, изготовленные вначале ковкой, а затем уже прокаткой, известны уже в начале XVII века [2] ). Массовое применение прокатки началось в Европе в XIX веке.

Классификация процессов прокатки

Процессы прокатки классифицируют по следующим признакам:

  • по температуре проведения процесса прокатку делят на горячую (температура металла при реализации процесса выше температуры рекристаллизации) и холодную (температура металла ниже температуры рекристаллизации). Также имеет место так называемая тёплая прокатка – обработка в области промежуточных температур;
  • по взаимному расположению осей валков и полосы различают продольную (ось прокатываемой полосы перпендикулярная осям валков), поперечную (ось прокатываемой полосы параллельна осям валков) и поперечно-винтовую или “косую” прокатку (оси валков находятся под некоторым углом друг к другу и к оси прокатываемой полосы;
  • по характеру воздействия валков на полосу и условиям деформации прокатка бывает симметричной и несимметричной. Симметричной прокаткой называют процесс при котором воздействие каждого из валков на прокатываемую полосу является идентичным. Если это условие нарушается процесс следует отнести к несимметричному;
  • по наличию или отсутствию внешних сил, приложенных к концам полосы, выделяют свободную и несвободную прокатку. Прокатка называется свободной если на полосу действуют только силы, приложенные со стороны валков. Несвободная прокатка осуществляется с натяжением или подпором концов полосы.

Продольная прокатка

Способ продольной прокатки является наиболее распространённым. При продольной прокатке полоса подводится к валкам, вращающимся в разные стороны, и втягивается в зазор между ними за счёт сил трения на контактной поверхности. Полоса обжимается по высоте и принимает форму зазора (калибра) между валками. При этом способе прокатки полоса перемещается только вперёд, то есть совершает только поступательное движение. В зависимости от калибровки валков форма поперечного и продольного сечения проката может быть разной. Таким способом получают листы, плиты, ленту, фольгу, сортовой прокат, периодические профили, гнутые профили и др.

Поперечная прокатка

При поперечной прокатке обрабатываемое тело (цилиндрической формы) помещается в зазор между двумя валками вращающимися в одну сторону и получает вращательное движение за счёт сил трения на контактной поверхности. Деформация тела происходит при встречном сближении валков. В продольном направлении обрабатываемое тело не перемещается (если нет специальных тянущих устройств). Поперечная прокатка используется для изготовления валов, осей, втулок и других тел вращения.

Читать еще:  Рейтинг крупнейших золотодобывающих компаний россии

Поперечно-винтовая прокатка

Поперечно-винтовая прокатка занимает промежуточное положение между продольной и поперечной. Этот способ широко используется для получения полых трубных заготовок (гильз). Обрабатываемое тело (цилиндрической формы) проходя между валками, вращается и одновременно совершает поступательное движение, то есть каждая точка тела (за исключением расположенных на его оси) движется по винтовой траектории.

Что такое прокатка металла

Виды проката

  • ” onclick=”window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,w > Печать
  • E-mail

Подробности Категория: Сортовой прокат

Сортовой прокат

В машиностроении, строительстве, на транспорте широко применяется металлический прокат: листы, полосы, ленты, рельсы, балки и т. д. Его получают в результате обжатия слитка металла в горячем или холодном состоянии между вращающимися валками прокатного стана. Таким образом обрабатывают сталь, цветные металлы и их сплавы.

Профиль проката (форма его поперечного сечения) зависит от формы валков. На рисунках показаны основные профили продукции прокатного производства, называемой сортовым прокатом.

Различают следующие профили сортового проката: простые (круг, квадрат, шестиугольник, полоса, лист); фасонные (рельс, балка, швеллер, тавр и др.); специальные (колеса, арматурная сталь и др.).

Чаще всего сортовой прокат используется в качестве заготовок для различных деталей. Например, из шестигранного прутка делают болты, гайки. Из круглого проката вытачивают цилиндрические детали на токарных станках. Уголковый прокат применяется в производстве рам, каркасов, стеллажей и т. д.

Прокаткой можно придать заготовке форму готовой детали, тем самым избежать дополнительной обработки и, следовательно, уменьшить отходы металла, сэкономить время.

Ниже представлены несколько образцов распространённых видов проката: труба, арматура, балка, швеллер, лист, уголок, полоса и т.д.

Сортовой прокатодин из видов полуфабрикатов. Так называют продукт труда, предназначенный для дальнейшей обработки и получения готовых изделий.
С некоторыми видами полуфабрикатов вы уже знакомы – это пиломатериалы, фанера, проволока.
Листовой прокат подразделяется на тонколистовой (до 4 мм) и толстолистовой (свыше 4 мм

Виды и свойства стали

Сталь — это сплав железа с углеродом (до 2%) и другими химическими элементами. Она широко применяется в машиностроении, на транспорте, в строительстве, быту.
В зависимости от состава различают углеродистую и легированную сталь. В углеродистой стали содержится 0,4. 2% углерода. Углерод придает стали твердость, но увеличивает хрупкость, снижает пластичность. При добавлении в сталь во время плавки других элементов: хрома, никеля, ванадия и др. — изменяются ее свойства. Одни элементы повышают твердость, прочность, другие — упругость, третьи придают антикоррозийность, жаропрочность и др. Стали, в которых есть эти элементы, называются легированными. В марках легированной стали добавки обозначают буквами: Нникель, Ввольфрам, Гмарганец, Дмедь, Ккобальт, Ттитан.

По назначению различают конструкционную, инструментальную и специальные стали.
Конструкционная углеродистая сталь бывает обыкновенного качества и качественная. Первая — пластичная, но обладает невысокой прочностью. Применяется для изготовления заклепок, шайб, болтов, гаек, мягкой проволоки, гвоздей. Вторая отличается повышенной прочностью. Из нее изготавливают валы, шкивы, ходовые винты, зубчатые колеса.
Сталь инструментальная обладает большей твердостью, прочностью, чем конструкционная, и применяется для изготовления зубил, молотков, резьбонарезных инструментов, сверл, резцов.
Специальные стали — это стали с особыми свойствами: жаропрочные, износостойкие, нержавеющие и др.
Все виды сталей маркируются определенным образом. Так, конструкционная сталь обыкновенного качества обозначается буквами Ст. и порядковым номером от до 7 (Ст. О, Ст. 1 и т. д.— чем выше номер стали, тем выше содержание углерода и предел прочности), качественная — двумя цифрами 05, 08, 10 и т. д., показывающими содержание углерода в сотых долях процента. По справочнику можно определить химический состав стали и ее свойства.
Свойства стали можно изменять с помощью теплового воздействия — термической обработки (термообработки). Она заключается в нагреве до определенной температуры, выдержке при этой температуре и последующем быстром или медленном охлаждении. Диапазон температур может быть широким в зависимости от вида термообработки и содержания углерода в стали.
Основные виды термообработкизакалка, отпуск, отжиг, нормализация.
Для повышения твердости стали применяют закалкунагревание металла до определенной температуры (например, до 800 °С) и быстрое охлаждение в воде, масле или других жидкостях.
При значительном нагревании и быстром охлаждении сталь становится твердой и хрупкой. Хрупкость после закалки можно уменьшить с помощью отпускаостывшую закаленную стальную деталь вновь нагревают до определенной температуры (например, 200. 300°С), а затем охлаждают на воздухе.
У некоторых инструментов закаливают только их рабочую часть. При этом повышается долговечность всего инструмента.
При отжиге заготовку нагревают до определенной температуры, выдерживают при этой температуре и медленно (в этом главное отличие от закалки) охлаждают. Отожженная сталь становится мягче и поэтому лучше обрабатывается.
Нормализацияразновидность отжига, только охлаждение происходит на воздухе. Этот вид термообработки способствует повышению прочности стали.

Термическую обработку стали на промышленных предприятиях выполняют рабочие-термисты. Термист должен хорошо знать внутреннее строение металлов, их физические, технологические свойства, режимы термообработки, умело пользоваться термическими печами, строго соблюдать правила безопасности труда.

Важнейшие механические свойства сталитвердость и прочность. На твердость сталь испытывают при помощи специальных приборов-твердомеров. Метод измерения основан на вдавливании в образец более твердого материала: шарика из твердой стали, алмазного конуса или алмазной пирамиды.

Значение твердости НВ определяют делением нагрузки на площадь поверхности отпечатка, оставляемого в металле (метод Бринелля) (рис. справа, а),

или по глубине погружения в металл алмазного острия, стального шарика (метод Роквелла) (рис. 6).

Прочность стали определяют на разрывных машинах испытанием образцов специальной формы, растягивая их в продольном направлении вплоть до разрыва (рис. слева). Определяя прочность, делят наибольшую нагрузку, которая предшествовала разрыву образца, на площадь его первоначального поперечного сечения.

Прокатка металлов

Прокатка металлов является таким видом пластической обработки, когда исходная заготовка обжимается вращающимися валками про­катного стана в целях уменьшения поперечного сечения заготовки и при­дания ей заданной формы. Существует три основных способа прокатки:

поперечно-винтовая (или косая).

При продольной прокатке деформирование заготовки осу­ществляется между вращающимися в разные стороны валками. Оси прокат­ных валков и обрабатываемой заготовки параллельны (или пере­секаются под небольшим углом). Оба валка вращаются в одном на­правлении, а заготовка круглого се­чения — в противоположном.

В процессе поперечной прокатки обрабатываемая заготовка удерживается в валках с помощью специального приспособления. Обжатие за­готовки по диаметру и придание ей требуемой формы сечения обеспе­чиваются соответствующей профилировкой валков и изменением рас­стояния между ними. Данным способом производят изделия, пред­ставляющие собой тела вращения (шары, оси, шестерни и пр.).

Поперечно-винтовая или косая прокатка выполняется во вращаю­щихся в одном направлении валках, установленных в прокатной клети под некоторым углом друг к другу. Станы косой прокатки ис­пользуют при производстве труб, главным образом для прошивки слитка или заготовки в гильзу. В момент соприкосновения металла с вращающимися валками, имеющими наклон к оси обрабатываемой за­готовки, возникают силы, направленные вдоль оси заготовки, и силы, направленные по касательной к ее поперечному сечению. Совместное действие этих сил обеспечивает вращение, втягивание обрабатываемой заготовки в суживающуюся щель и деформирование.

Читать еще:  Как нарезать трубную резьбу на токарном станке

К основным технологиче­ским операциям любой техно­логической схемы производства проката следует отнести: под­готовку исходных материалов; нагрев перед прокаткой (кроме хо­лодной прокатки, когда, однако, часто требуется другая операция — соответствующая термическая обработка); горячую и холодную про­катку; калибровку и производство гнутых профилей; отделку с опе­рациями резки, правки, термической обработки, удаления поверхно­стных дефектов, травления и пр.

Волочение металла

Волочение металла — это протягивание изделия кругло­го или фасонного профиля через отверстие волочильного очка (во­локу), площадь выходного сечения которого меньше площади сечения исходного изделия. Волочение выполняется тяговым усилием, прило­женным к переднему концу обрабатываемой заготовки. Данным спосо­бом получают проволоку всех видов, прутки с высокой точностью по­перечных размеров и трубы разнообразных сечений.

Обработка металла волочением находит широкое применение в металлургической, кабельной и машиностроительной промышленности. Волочением получают про­волоку с минимальным диаметром 0,002 мм, прутки диаметром до 100 мм, причем не только круглого сечения, трубы главным образом небольшого диаметра и с тонкой стенкой. Волочением обрабатывают стали разнообразного химического состава, прецизионные сплавы, а также практически все цветные металлы (золото, серебро, медь, алюминий, и др.) и их сплавы. Изделия, полученные волочением, обладают высоким качеством поверхности и высокой точностью разме­ров поперечного сечения. Если изделию требуется придать в основном эти характеристики, то такой вид обработки называют калибровкой.

Волочение чаще всего выполняют при комнатной температуре, когда пластическую деформацию большинства металлов сопровож­дает наклеп. Это свойство в совокупности с термической обработкой, используют для повышения некоторых механических характеристик металла. Так, например, арматурная проволока диаметром 3. 12 мм из углеродистой конструкционной, стали (0,70. 0,90%С) при произ­водстве ее волочением обеспечивает предел прочности 1400. 1900 МПа и предел текучести 1200. 1500 МПа.

В качестве исходного материала для волочения применяют ката­ную и прессованную заготовки. При производстве алюминиевой, медной и другой проволоки в качестве исходной заготовки используют катанку, получаемую непосредственно из плавильной печи через кристаллизатор и непрерывный прокатный стан. Независимо от спо­соба получения исходная заготовка перед волочением проходит тщательную предварительную подготовку, которая заключается в про­ведении того или иного вида термической обработки, удалении ока­лины и подготовке поверхности для закрепления и удержания на ней смазки в процессе волочения. Эти предварительные операции обеспе­чивают нормальное выполнение пластической деформации в волочиль­ном отверстии, способствуют получению высокого качества поверхности изделия, уменьшают усилие и энергию на волочение и снижают износ волочильного инструмента.

Термическая обработка металла перед волочением снимает наклеп, придает металлу необходимые пластические свойства, обеспечивает получение наиболее оптимальной структуры. Поэтому термическую обработку выбирают такой, чтобы в сочетании с пластической дефор­мацией она обеспечивала максимальные механические и другие ха­рактеристики обрабатываемого изделия. В зависимости от химиче­ского состава металла и назначения продукта волочения применяют отжиг, нормализацию, закалку, патентирование. Патентирование применяют для углеродистых сталей. Процесс патентирования состоит в нагреве металла выше критической точки и охлаждении его в среде с температу­рой 450…500°С. В качестве такой закалочной среды используют рас­плавленный свинец или соли.

При производстве проволоки и прутков волочением большое вни­мание уделяют подготовке поверхности продукта обработки перед волочением. Удаление окалины в калибровочных и волочильных це­хах производят механическим, химическим и электрохимическим способами, а также комбинациями этих способов. При механической очистке поверхности от окалины проволоку или пруток подвергают периодическим перегибам в разных плоскостях между роликами, после чего металл поступает на завершающую очистку стальными щетками. Такой способ экономически целесообразен, пригоден для очистки поверхности главным образом из углеродистой стали, ока­лина которой при перегибах сравнительно легко разрушается и опа­дает. Из механических способов, обеспечивающих достаточно успеш­ную очистку поверхности металла, находит применение дробеструй­ная обработка. Под действием ударов дроби из отбеленного чугуна. стального литья или высокопрочной мелко нарезанной стальной про­волоки окалина на поверхности обрабатываемого изделия разрых­ляется и удаляется. Этот способ очистки поверхности металла от ока­лины во многих случаях не требует дополнительного травления и наиболее часто применяется в калибровочных цехах.

Химические способы удаления окалины получили широкое рас­пространение благодаря своей надежности, хотя они менее эконо­мичны по сравнению с механическими способами. Травление углеро­дистых и ряда легированных сталей производят в серной или соляной кислотах. Высоколегированные стали (кислотоупорные, нержавеющие и др.) травят в смесях кислот (серная и соляная, серная и азотная и др.). Медь и ее сплавы травят в 5. 10%-ной серной кислоте при темпера­туре 30. 60°С. Травление металла в кислотах для очистки от окалины обычно производят с добавлением в ванну присадок (ингибиторов травления), которые значительно уменьшают скорость растворения основного металла, но не влияют на скорость растворения окалины, что предот­вращает перетравливание. Кроме того, присадки снижают диффузию водорода (Н2) в металл, уменьшают загазованность травильных от­делений, улучшают условия труда.

Непосредственно после травления металл тщательно промывают для удаления остатков раствора кислоты, солей железа, шлама, тра­вильной присадки, грязи. Промывку производят немедленно после травления, так как задержка ведет к высыханию травильной жид­кости и выделению труднорастворимых солей железа. Обычно про­мывку ведут сначала в горячей воде, что обеспечивает интенсивное растворение солей, а затем для лучшего удаления шлама — в струе холодной воды из шланга под давлением около 0,7 МПа.

После удаления окалины наносят подсмазочный слой, который должен хорошо удерживать смазку при волочении и способствовать предохранению налипания металла на рабочую поверхность волоки.

После травления, промывки, нанесения подсмазочного слоя металл сушат в специальных камерах при циркуляции воздуха температурой 300. 350°С. Сушка удаляет влагу, а также устраняет возможную тра­вильную (водородную) хрупкость, которая может возникнуть от того, что часть водорода, образующегося при травлении, диффунди­рует в металл и вызывает ухудшение его пластических свойств.

Все операции по подготовке поверхности металла к волочению вы­полняют в специальном изолированном помещении. Для травления и обработки поверхности проволоки и прутков существуют травильные машины периодического и непрерывного действия. Обработка в машинах непрерывного действия обес­печивает быстрое и равномерное травление изделий любых сечений. Этот способ является наиболее прогрессивным, так как в непрерыв­ном процессе можно сочетать термическую обработку, удаление ока­лины и нанесение подсмазочного слоя. Такая поточная обработка обеспечивает полную автоматизацию процесса, повышает качество металла, снижает трудоемкость операций.

После процесса волочения прутки помимо термической обработки во многих случаях правят, шлифуют, полируют и в зависимости от назначения наносят на них защитные покрытия, например, цинкованием, лужением, хромированием, кадмированием, алитированием, лакировкой и др. Правку обычно выполняют на роликоправильных машинах, которые устанавливают или в потоке производства, или отдельно. Шлифовка поверхности калиброванных прутков на глубину до 0,15. 0,30 мм используется для удаления поверхностных дефек­тов, снятия обезуглероженного слоя, придания точных размеров по­перечному сечению прутка и др.

Процесс прокатки металла (стр. 1 из 3)

1 Сущность процесса прокатки

2 Устройство и классификация прокатных станов

2.1 Классификация станов по типу рабочих клетей

2.2 Классификация станов по назначению

3 Основы технологии прокатного производства

4 Технология производства отдельных видов проката

Производство металла имеет большое значение для развития народного хозяйства и роста благосостояния людей. От успешного развития металлургии в значительной мере зависит обеспечение металлом машиностроения, машиностроительства, транспорта, сельского хозяйства и других областей народного хозяйства. Технологический процесс получения готового проката является завершающей стадией металлургического производства. Через прокатные цеха проходит почти вся сталь, выплавляемая в сталеплавильных цехах, поэтому наряду с увеличением производства проката существует проблема повышения эффективности прокатного производства и качества готового продукта. Особенностью развития прокатного производства является переход к непрерывным процессам прокатки. Это позволяет существенно увеличить производительность прокатных станов и качество их продукции. Обеспечение непрерывной схемы прокатки требует существенного повышения уровня автоматизации технологических процессов и обеспечения оптимальности управления.
Управление технологическим процессом, проблема выбора оптимальной технологии связаны с выбором критерия оценки качества. Задачу выбора таких критериев можно определить как задачу определения качества технологическогопроцесса.

Читать еще:  Как правильно наточить коньки в домашних условиях

Актуальность темы реферата состоит в том, что с увеличением производства проката существует проблема повышения эффективности прокатного производства и качества готового продукта. Таким образом, процесс прокатки является.

Целью данной работы является изучение и обобщение теоретической литературы по данной теме.

1 Сущность процесса прокатки

Прокатный стан – это совокупность привода, шестеренной клети, одной или нескольких рабочих клетей. Прокатные станы классифицируют по трем основным признакам: по числу и расположению валков; по числу и расположению рабочих клетей; по их назначению.

Прокатка металла осуществляется при прохождении его между валками, вращающимися в разных направлениях (рис. 21.1). При прокатке металл обжимается, в результате чего толщина полосы уменьшается, а ее длина и ширина увеличиваются. Разность между исходной h. и конечной h1, толщинами полосы называют абсолютным обжатием:

Разность между конечной b1и исходной bширинами полосы называют абсолютным уширением

Величину деформации полосы при прокатке характеризуют следующие показатели (коэффициенты):

относительное обжатие — отношение абсолютного обжатия к исходной толщине полосы;

коэффициент обжатия — отношение исходной толщины к конечной

коэффициент вытяжки — отношение длины полосы после прокатки l1 к исходной длине l:

Поскольку объем металла в процессе прокатки не изменяется, то

Таким образом, длина полосы при прокатке увеличивается пропорционально уменьшению ее поперечного сечения. Коэффициенты обжатия, вытяжки и уширения характеризуют высотную, продольную и поперечную деформацию металла.

Металл соприкасается с каждым из валков по дуге АВ (рис. 1.), которую называют дугой захвата. Угол а, соответствующий этой дуге, называют углом захвата.

Рис.1. Схема прокатки металла

Объем металла, ограниченный дугами захвата АВ, боковыми гранями полосы и плоскостями входа АА металла в валки и выхода ВВ металла из них, называют очагом деформации металла. Длина этого очага

Угол захвата определяют по формуле

Рис. 21.2. Очаг деформации и угол захвата при прокатке

Эта формула выражает зависимость между углом захвата а, обжатием Ahи диаметром валков D.

Процесс прокатки металла обеспечивается трением, возникающим по контактным поверхностям валков с прокатываемой полосой. В момент захвата со стороны каждого валка на металл действуют две силы (рис. 21.3): нормальная (радиальная) сила N и касательная (тангенциальная) сила Т. Из механики известно, что при относительном движении двух тел сила трения равна нормальной силе, умноженной на коэффициент трения

Отношение силы трения к нормальной силе равно тангенсу угла трения β

Для осуществления захвата металла валками необходимо, чтобы соблюдалось условие: f>tga, tg β >tga, β >a.

Максимально допустимый угол захвата при прокатке зависит от материала валков и прокатываемой полосы, состояния их поверхности, температуры и скорости прокатки. Обычно при прокатке блюмов и крупных заготовок максимальный угол захвата составляет 24.. .32°, при горячей прокатке листов и полос— 15. ..20°, при холодной прокатке листов и лент со смазкой—2. ..10°.

При расчете на прочность валков и других деталей рабочей клети прокатного стана и при определении мощности двигателя стана необходимо знать усилие прокатки, которое определяют по формуле

Где pcP — среднее давление прокатки; F— горизонтальная проекция контактной площади металла с валком.

При прокатке простых профилей (листов, полос и заготовок прямоугольного и квадратного сечений) контактная площадь определяется произведением средней ширины полосы в очаге деформации на длину очага деформации. При прокатке сложных профилей (уголков, швеллеров, балок, рельсов и т. п.) контактную площадь определяют графически или по приближенным формулам. Среднее давление прокатки рассчитывают по формулам или находят опытным путем.

2 Устройство и классификация прокатных станов

Главная линия прокатного стана состоит из следующих основных узлов: рабочей клети 1, шпинделей 2, шестеренной клети 3, коренной муфты 4, редуктора 5, моторной стеренной клети 3, коренной муфты 4, редуктора 5, моторной муфты 6, электродвигателя 7. В рабочей клети осуществляется прокатка металла. Она состоит (рис.21.5) из двух станин 1, предназначенных для установки в них валков 2 и для восприятия усилия прокатки, передаваемого через опоры шеек. Станины в верхней части соединяются траверсой 3. Прокатные валки 2 укреплены в подушках с подшипниками качения 5. Механизм 4 для установки верхнего валка расположен в верхней части станин.

Прокатные валки обжимают металл и придают ему требуемую форму. Прокатный валок (рис. 21.6) состоит из бочки 3 (гладкой или с ручьями 4), шеек 2, расположенных с обеих сторон бочки и опирающихся на подшипник валка, трефов 1, предназначенных для соединения валка со шпинделем. Валки изготовляют из чугуна и стали. Мягкие чугунные валки применяют при черновой горячей прокатке стали. На блюмингах, слябингах, обжимных клетях сортовых станов и на станах холодной прокатки листов применяют литые или кованые стальные валки. Кованые валки несколько прочнее литых, но дороже в 1,5. ..2 раза, поэтому их применяют реже. Для листовых станов применяют валки из легированной стали (хромоникелевой и хромомолибденовой).

Рис. 21.6. Прокатный валок и его элементы

Для прокатных станов применяют двигатели постоянно или переменного тока (асинхронные и синхронные). Так как частота вращения быстроходных двигателей обычно не соответствует частоте вращения валков в прокатных клетях, между двигателями и клетями устанавливают редукторы. В прокатим клетях вращающий момент двигателя необходимо распредели между несколькими валками. Для этого применяют шестеренные клети. Крутящий момент от двигателя к валкам передается при помощи шпинделей и муфт.

2.1 Классификация станов по типу рабочих клетей

В зависимости от числа и расположения валков в клети стан разделяют на двухвалковые, трехвалковые, четырехвалковые многовалковые, универсальные.

Станы двухвалковые имеют рабочие клети (рис. 21.7, а) с двумя валками с постоянным направлением вращения. Полоса между валками проходит один раз. Реверсивные двухвалковые станы имеют переменное направление вращения валков для прохождения металла между валками несколько раз (блюминги, слябинги).

Станы трехвалковые имеют в рабочей клети три прокатных палка с постоянным направлением вращения, расположенных и одной вертикальной плоскости (рис. 21.7,6). Для задачи прокатываемой полосы между верхним и средним валками служат подъемно-качающиеся столы, установленные с одной или обеих сторон клети. К этому типу станов относят сортовые линейные станы.

Станы четырехвалковые (рис 21.7 в) имеют в рабочей клети четыре валка в одной вертикальной плоскости. Два валка меньшего диаметра являются рабочими, два валка большего диаметра являются –опорными. Эти станы применяют при горячей и холодной прокатке листовой и полосовой стали.

Многовалковые станы (шести-, двенадцати- и двадцативалковые) (рис 21.7 г) широко применяют в последние годы. Благодаря малому диаметру валков (10…30 мм) и большой жесткости рабочей клети позволяют катать тончайшую ленту. Рабочие валки этих станов бесприводные, они опираются на ряд приводных валков, которые в свою очередь опираются на ряд опорных валков. Такая схема обеспечивает практически полное отсутствие прогиба рабочих валков.

Ссылка на основную публикацию
Adblock
detector