Для чего нужен алюминий
Elton-zoloto.ru

Драгоценные металлы

Для чего нужен алюминий

Использование алюминия: сферы применения чистого металла и его сплавов

Алюминий, как наиболее легкий и пластичный металл, обладает широкой сферой использования. Он отличается устойчивостью к коррозии, имеет высокую электропроводность, а также легко переносит резкие температурные колебания. Еще одной особенностью является при контакте с воздухом появление на его поверхности особой пленки, которая защищает металл.

Все эти, а также другие особенности послужили его активному использованию. Итак, давайте узнаем подробнее, каковы области применения алюминия.

Основные области применения алюминия и его сплавов

Данный конструкционный металл имеет широкое распространение. В частности именно с его использования начали свою работу авиастроение, ракетостроение, пищевая промышленность и изготовление посуды. Благодаря своим особенностям алюминий позволяет улучшить маневренность судов за счет меньшей массы.

Отдельно стоит упомянуть способность металла проводить ток. Такая особенность позволила сделать его главным конкурентом меди. Он активно применяется при производстве микросхем и в целом в области микроэлектроники.

Наиболее популярными сферами использования можно назвать:

  • Авиастроение: насосы, двигатели, корпуса и прочие элементы;
  • Ракетостроение: как горючий компонент для ракетного топлива;
  • Судостроение: корпуса и палубные надстройки;
  • Электроника: провода, кабели, выпрямители;
  • Оборонное производство: автоматы, танки, самолеты, различные установки;
  • Строительство: лестницы, рамы, отделка;
  • Область ЖД: цистерны для нефтепродуктов, детали, рамы для вагонов;
  • Автомобилестроение: бампера, радиаторы;
  • Быт: фольга, посуда, зеркала, мелкие приборы;

Широкое распространение объясняется преимуществами металла, однако есть у него и существенный недостаток – это невысокая прочность. Чтобы минимизировать его, в металл добавляется медь и магний.

Как вы уже поняли, основное свое применение получили алюминий и его соединения в электротехнике (и просто технике), быту, промышленности, машиностроении, авиации. Теперь же мы поговорим о применении металла алюминия в строительстве.

О применении алюминия и его сплавах расскажет это видео:

Использование в строительстве

Использование алюминия человеком в области строительства обуславливается его устойчивостью к коррозии. Это дает возможность изготавливать из него конструкции, которые планируется использовать в агрессивных средах, а также на открытом воздухе.

Кровельные материалы

Алюминий активно используется для производства кровли. Этот листовой материал помимо хороших декоративных, несущих и ограждающих особенностей, отличается и доступной стоимостью по сравнению с остальными кровельными материалами. При этом такая кровля не требует профилактического осмотра или ремонта, а срок ее службы превышает многие существующие материалы.

При добавлении в чистый алюминий других металлов можно получить абсолютно любые декоративные особенности. Такая кровля позволяет иметь широкую цветовую гамму, которая идеально впишется в общий стиль.

Оконные переплеты

Можно встретить алюминий среди фонарных и оконных переплетов. Если с аналогичной целью использовать древесину, то она проявит себя как ненадежный и недолговечный материал.

Сталь же быстро покроется коррозией, будет иметь большой вес переплета и неудобства в его открытии. В свою очередь алюминиевые конструкции такими недостатками не обладают.

О свойствах и использовании алюминия расскажет видеоролик ниже:

Стеновые панели

Алюминиевые панели производятся из сплавов этого металла и используются для внешней отделки домов. Они могут иметь вид обычных штампованных листов или готовых ограждающих панелей, состоящих из листов, утеплителя и облицовки. В любом случае они максимально сдерживают тепло внутри дома и, обладая небольшим весом, не несут нагрузку на фундамент.

Отдельной характеристики заслуживает применение сплава алюминия разных марок.

Соединения металла

Сплавы получается в результате искусственного добавления к алюминию других металлов с целью получения необходимых свойств. И на сегодняшний момент существует нескончаемое количество составов таких сплавов, имеющих самое широкое применение.

  • Наиболее известной сферой их применения является авиастроение. Для производства самолетов используются сплавы, состоящие из алюминия, цинка и магния, что в результате позволяет получить сверхпрочный и надежный материал.
  • Также нередко используются сплавы алюминия с железом, титаном, никелем.

Если вы захотите самостоятельно изготовить что-либо из алюминия, то следующее видео расскажет вам о его расплавке в домашних условиях:

Алюминий

Алюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий – это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Читать еще:  Какие существуют виды термической обработки стали

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг – это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Алюминий

Алюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий – это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг – это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Применение алюминия

Алюминий навсегда вошел в историю как металл, позволивший человеку летать. Легкий, прочный и пластичный, он оказался идеальным материалом для создания управляемых летательных аппаратов. Не даром второе имя алюминия – «крылатый металл».

Сегодня на алюминий приходится около 75-80% общей массы современного самолета. А первое его применение в авиации за фиксировано еще до изобретения самих самолетов. Например, граф Фердинанд Цеппелин делал из алюминиевого сплава каркасы для своих знаменитых дирижаблей.

Прорыв, положивший начало современной авиации, произошел в 1903 году, когда братья Райт впервые в истории человечества совершили полет на управляемом летательном аппарате «Флайер-1». Автомобильные двигатели того времени весили слишком много, обладали низкой мощностью и были неспособны поднять аппарат в воздух. Специально для этой цели был разработан новый двигатель, детали которого, в том числе блок цилиндров, были отлиты из алюминия.

С тех пор алюминий получил статус ключевого конструкционного материала в авиации, и держит эту марку по сей день. Состав авиационных сплавов меняется, самолеты совершенствуются, но главная задача авиаконструкторов остается неизменной: создание легкой машины с максимальной вместимостью, использующей минимальное количество топлива и не поддающееся коррозии со временем. Именно алюминий позволяет инженерам добиваться выполнения всех необходимых условий. В современных самолетах алюминий применяется буквально повсюду: в фюзеляже, закрылках, конструкциях крыла и хвостовой части, крепежных системах, конструкциях выхлопных отверстий, блоков питания, заправочных штангов, дверей и полов, каркасов пилотных и пассажирских сидений, топливных разъемах, гидравлических системах, кабинных стойках, подшипниках, приборах в кабине пилотов, турбинах двигателей и много где еще.

Читать еще:  Как добыть золото магнитом

Основные алюминиевые сплавы, применяемые в авиации, – серии 2ххх, 3ххх, 5ххх, 6ххх и 7ххх. Серия 2ххх рекомендована для работы при высоких температурах и с повышенными значениями коэффициента вязкости разрушения. Сплавы серии 7ххх — для работы при более низких температурах значительно нагруженных деталей и для деталей с высокой сопротивляемостью к коррозии под напряжением. Для малонагруженных узлов применяются сплавы серии 3ххх, 5ххх и 6xxx. Они же используются в гидро-, масло- и топливных системах.

Наибольшее применение получил сплав 7075, состоящий из алюминия, цинка, магния и меди. Это самый прочный из всех алюминиевых сплавов, сравнимый по этому показателю со сталью, но в 3 раза легче нее.

Самолеты собираются из листов и профилей, соединяющихся друг с другом алюминиевыми заклепками, число заклепок в одной машине может достигать нескольких миллионов. В некоторых моделях вместо листов используются прессованные панели, и в случае появления трещины она доходит только до конца такой панели. Например, крыло крупнейшего грузового самолета в мире Ан-124-100 «Руслан», грузоподъемностью до 120 тонн, состоит из восьми прессованных алюминиевых панелей шириной 9 метров каждая. Конструкция крыла такова, что оно работает даже при двух разрушенных панелях.

Сегодня авиаконструкторы пытаются найти материал, обладающий всеми преимуществами алюминия, но еще более легкий. Единственным кандидатом, подходящим на эту роль, на данный момент является углеродное волокно. Оно состоит из нитей диаметром от 5 до 15 мкм, образованных преимущественно атомами углерода. Первым магистральным пассажирским самолетом, фюзеляж которого был полностью изготовлен из композиционных материалов, стал Boeing 787 Dreamliner, выполневший свой первый коммерческий полет в 2011 году.

Однако производство таких самолетов обходится гораздо дороже, чем при использовании алюминия. Кроме этого, углеволокно не обеспечивает должного уровня безопасности летательных аппаратов.

Алюминий оказался незаменим не только в авиации, но и в космонавтике, где сочетание минимальной массы с максимальной прочностью еще более критично. Корпус первого искусственного космического спутника Земли, запущенного в СССР в 1957 году, был выполнен из алюминиевого сплава.

Ни один современный космический корабль не обходится без алюминия – от 50% до 90% веса космических летательных аппаратов приходится на конструкции из алюминиевых сплавов. Они использовались для изготовления корпуса космических челноков Space Shuttle, телескопической балки антенны космического телескопа Hubble, из них изготавливаются водородные ракетные баки, носовые части ракет, конструкции разгонных блоков, корпуса орбитальных космических станций и крепежей для солнечных батарей на них.

Даже твердотопливные ракетные ускорители работают на алюминии. Такие ускорители разгоняют первую ступень космических кораблей и состоят из алюминиевого порошка, окислителя в виде перхлората того же алюминия и связующего вещества. Например, самая мощная на сегодня в мире ракета-носитель «Сатурн-5» (может вывезти на околоземную орбиту 140-тонный груз) за время полета сжигает 36 тонн алюминиевого порошка.

Автомобиль – самый распространенный вид транспорта в мире. Главным конструкционным материалом здесь является относительно дешевая сталь. Однако вместе с тем как основными приоритетами автомобильной отрасли становятся экономия топлива, снижение выбросов СО2, а также дизайн автомобиля, все более важную роль в автомобилестроении начинает играть алюминий.

В 2014 году мировая автомобильная индустрия (без учета Китая) потребила 2,87 млн тонн алюминия. Ожидается, что к 2020 году эта цифра вырастет до 4,49 млн тонн. Ключевыми факторами этого роста являются как увеличение производства самих автомобилей, так и повышение использования алюминия в них.

Каждый килограмм алюминия, использованный при изготовлении автомобиля, позволяет снизить общую массу машины на килограмм. Поэтому на алюминий переводилось производство все большего количества его деталей: радиаторы системы охлаждения двигателя, колесные диски, бампера, детали подвески, блоки цилиндров двигателя, корпуса трансмиссий и, наконец, детали кузова – капоты, двери и даже вся рама. В результате с 1970-х годов доля алюминия в общем весе автомобиля постоянно увеличивается – с 35 кг до сегодняшних 152 кг. Согласно прогнозам экспертов, к 2025 году среднее содержание алюминия в одном автомобиле достигнет 250 кг.

Применять алюминий для изготовления кузова первыми стали производители автомобилей класса «премиум». Так, первым серийным автомобилем с полностью алюминиевым кузовом стала Audi A8, выпущенная в 1994 году. За ней последовали и другие люксовые бренды – BMW, Mercedes-Benz, Porsche, Land Rover, Jaguar.

В 2014 году произошло очередное знаковое событие для отрасли – автомобиль с полностью алюминиевым кузовом появился в массовом сегменте. Им стал Ford-150 – самый популярный пикап в США на протяжении 38 лет. Благодаря переходу на алюминий автомобиль стал легче на 315 кг по сравнению с предшествующей моделью, что позволило существенно снизить расход топлива, выхлоп CO2, а также увеличить грузоподъемность и улучшить динамику разгона и торможения. При этом автомобиль получил самый высокий рейтинг надежности NHTSA – пять звезд вместо четырех в предыдущей модели.

Еще одно замечательное свойство алюминия – он отлично «гасит» удар, причем делает это в два раза эффективнее, чем сталь. Поэтому автопроизводители уже давно используют этот металл для бамперов. Днище революционного электрического автомобиля Tesla оснащено 8-миллиметровой пуленепробиваемой броней из алюминиевых сплавов, которая защищает батарейный отсек и гарантирует безопасность при движении на скорости в 200 км/ч. Недавно компания установила на свои машины дополнительную алюминиево-титановую защиту, которая позволяет автомобилю в прямом смысле слова разрушать попадающие под колеса препятствия из бетона и закаленной стали, сохраняя управляемость.

Алюминиевый кузов имеет преимущества перед стальным в плане безопасности еще и потому, что деформации в алюминиевых конструкциях локализуются в компактных зонах, не давая деформироваться другим частям кузова и сохраняя максимальную безопасность той части машины, где находятся пассажиры.

Эксперты утверждают, что в ближайшее десятилетие автопроизводители существенно увеличат использование алюминия в своих моделях. «Крылатый металл» в большом количестве будет использоваться в деталях кузова либо для изготовления кузова целиком.

При этом многие автомобильные компании сегодня договариваются с производителями алюминия о создании производств замкнутого цикла, когда из идущих на лом алюминиевых деталей утилизируемых автомобилей создаются запчасти для новых машин. Сложно представить себе более экологичный вид промышленного производства.

Применение алюминия в железнодорожном транспорте началось практически сразу после образования самой алюминиевой промышленности. В 1894 году железнодорожная компания New York, New Haven, and Hartford Railroad, принадлежавшая тогда банкиру Джону Пирпонту Моргану (J.P. Morgan), начала выпускать специальные легкие пассажирские вагоны, сидения которых были выполнены из алюминия.

Однако сначала алюминий оказался наиболее востребованным в сегменте грузоперевозок, где от состава требуется максимально низкий вес, что позволяет перевезти больший объем грузов.

Сегодня алюминиевые вагоны используются для перевозки угля, различных руд и минералов, а также зерна, в вагонах-цистернах перевозят кислоты. Существуют также вагоны для перевозки готовых товаров, например, новых автомобилей – с завода до автодилерского центра.

Алюминиевый грузовой вагон на треть легче, чем стальной. Его более высокая изначальная стоимость окупается в среднем за два первых года эксплуатации за счет перевозки большего объема грузов. При этом алюминий в отличие от стали не подвержен коррозии, поэтому алюминиевые вагоны долговечны и за 40 лет использования теряют лишь 10% своей стоимости.

В пассажирском железнодороджном транспорте алюминий позволяет производить вагоны на треть более легкие, чем стальные аналоги. В случае метро и пригородных поездов, для которых характерны частые остановки, это позволяет добиться существенной экономии энергии, затрачиваемой на разгон состава. Помимо этого, алюминиевые вагоны проще в производстве и содержат значительно меньшее количество деталей.

В железнодорожном транспорте дальнего следования алюминий активно применяется в производстве высокоскоростных поездов, активное применение которых в мире началось в 1980-х годах. Такие поезда развивают скорость до 360 км/ч и выше. Новые технологии в этом направлении позволят добиться скоростей более 600 км/ч.

Алюминий дает возможность снизить вес такого поезда и соответственно уменьшить прогиб рельсов, создающий сопротивление движению. Кроме того, высокоскоростной поезд, как самолет, должен обладать обтекаемой формой и минимальным числом выступающих деталей – здесь на помощь конструкторам вновь приходит «крылатый металл».

Редактор: Светлана Светачева

“Крылатый металл” является одним из самых распространенных в быту и производстве. Алюминий используется при создании мостов, автомобилей, самолетов и лаже смартфонов.

О том, где еще может использоваться алюминий, рассказывает Life.ru.

В небе и в космосе

Впервые алюминий “полетел” в 1900 году — в виде каркаса и винтов огромного дирижабля LZ-1 Фердинанда Цеппелина. Но мягкий чистый металл годился только для медлительных летательных аппаратов легче воздуха. По-настоящему “крылатый” алюминий был уже прочнее в пять раз, поскольку содержал в своём составе марганец, медь, магний, цинк в разных процентных соотношениях — небо и космос покоряли разновидности дюралюминия, сплава, изобретённого ещё в начале ХХ века немецким инженером Альфредом Вильмом.

Материал был перспективным, но имел и немало ограничений — требовал так называемого старения, то есть набирал заложенную в него прочность не сразу, а лишь со временем. Да и сварке не поддавался… И тем не менее покорение космоса началось именно с дюраля, из которого в том числе выполнен и шар знаменитого первого искусственного спутника Земли.

Читать еще:  Сколько штук арматуры в тонне 14 мм

Гораздо позже, в разгар космической эпохи, начали появляться сплавы и материалы на основе алюминия с куда более замечательными свойствами. К примеру, дружба алюминия с литием позволила сделать детали самолётов и ракет значительно легче, не снижая прочности, а сплавы с титаном и никелем обладают свойством “криогенного упрочнения”: в космическом холоде пластичность и прочность их только возрастают. Из тандема алюминия и скандия была выполнена обшивка космического челнока “Буран”: алюминиево-магниевые пластины стали гораздо прочнее на разрыв, сохранив при этом гибкость и вдвое повысив температуру плавления.

Более современные материалы — не сплавы, а композиты. Но и в них основой чаще всего является алюминий. Один из современных и перспективных авиакосмических материалов называется “бороалюминиевый композит”, где волокна бора прокатываются сэндвичем со слоями алюминиевой фольги, образуя под высокими давлениями и температурами крайне прочный и лёгкий материал. К примеру, лопатки турбин продвинутых авиационных двигателей представляют собой бороалюминиевые несущие стержни, одетые в титановую “рубашку”.

В автопроме и на транспорте

Сегодня у новых моделей Range Rover и Jaguar доля алюминия в конструкции кузова составляет 81%. Первые же эксперименты с алюминиевыми кузовами принято приписывать компании Audi, презентовавшей A8 из лёгких сплавов в 1994 году. Однако ещё в начале ХХ века этот лёгкий металл на деревянном каркасе был фирменным стилем кузовов знаменитых британских спорткаров Morgan. Настоящее “алюминиевое вторжение” в автопром началось в 1970-е, когда заводы массово принялись использовать этот металл для блоков цилиндров двигателей и картеров коробок передач вместо привычного чугуна; чуть позже распространение получили легкосплавные колёса вместо штампованных стальных.

В наши дни ключевой тренд автопрома — электричество. И лёгкие сплавы на основе алюминия приобретают особую актуальность в кузовостроении: “энергосберегающий” металл делает электромобиль легче, а значит, увеличивает пробег на одном заряде батарей. Алюминиевые кузова использует марка Tesla — законодатель мод на рынке автомобилей будущего, и этим, собственно, всё сказано!

Отечественных автомобилей с алюминиевыми кузовами пока нет. Но нержавеющий и лёгкий материал уже начинает проникать в российскую транспортную сферу. Характерный пример — ультрасовременные скоростные трамваи “Витязь-М”, чьи салоны полностью выполнены из алюминиевых сплавов, практически вечных и не нуждающихся в постоянной подкраске. Стоит отметить, что на создание одного трамвайного интерьера требуется до 1,7 тонны алюминия, который поставляет Красноярский алюминиевый завод “Русала”.

“Потолок, стены, стойки — всё алюминиевое. И это не просто обшивка листами, детали сложные, совмещающие в себе и отделочные, и несущие элементы, и туннели для вентиляции и проводки, — рассказывает Виталий Деньгаев, гендиректор компании “Красноярские машиностроительные компоненты”, где были созданы алюминиевые салоны “Витязя”. — Плюс помимо эстетики мы получаем ещё и высочайшую безопасность: в отличие от пластиков и синтетики алюминиевый салон не выделяет вредных веществ, если возникло возгорание!”

С 17 марта этого года 13 трамваев “Витязь-М” начали ходить по Москве и к 5 апреля уже перевезли первую сотню тысяч пассажиров! Этот быстрый и бесшумный городской транспорт с салонами на 260 человек, с Wi-Fi, климат-контролем, местами для инвалидов и детских колясок и прочими элементами комфорта, рассчитан на срок службы в 30 лет, что вдвое больше, чем у составов прошлых моделей. В ближайшие три года столица получит 300 “Витязей”, 100 из которых встанут на рельсы уже в этом сезоне.

В принтерах будущего

Элементарными любительскими 3D-принтерами, печатающими из пластиковой нити, уже никого не удивишь. Сегодня начинается эра полноценной серийной 3D-печати деталей из металла. Алюминиевый порошок — едва ли не самый распространённый материал для технологии, называемой AF (от Additive Fabrication, “аддитивное производство”). Additive по-английски — “добавка”, и в этом глубокий смысл названия технологии: деталь производится не из болванки, от которой в процессе обработки отрезается лишний материал, а наоборот — добавлением материала в рабочую зону инструмента.

Металлический порошок выходит из дозатора AF-машины и послойно спекается лазером в единую прочную массу монолитного алюминия. Детали, которые делаются цельными по методу AF, поражают воображение своей пространственной сложностью; выполнить их классическими методами даже на самых современных металлообрабатывающих станках — невозможно! За счёт ажурной конструкции детали, созданные на машинах аддитивной печати из порошков алюминиевых сплавов, имеют прочность, как у монолита, будучи при этом в несколько раз легче. Производятся они безотходно и быстро — такие металлические “кружева” незаменимы в биомедицине, авиации и космонавтике, в точной механике, при изготовлении пресс-форм и так далее.

Ещё недавно все технологии, связанные с Additive Fabrication, были иностранными. Но сейчас активно развиваются отечественные аналоги. Например, в Уральском федеральном университете (УрФУ) готовится к запуску экспериментальная установка по производству металлических порошков для AF-3D-печати. Установка работает на принципе распыления расплавленного алюминия струёй инертного газа, такой метод позволит получать металлические порошки с любыми заданными параметрами размерности зерна.

В строительстве и освещении

Алюминий может быть также фасадным и кровельным материалом, срок службы которого не ограничивается парой лет и который крайне удобен для дизайнеров и монтажников! Для строительства разработаны особые патентованные сплавы и композиты с самыми разными свойствами — Alclad, Kal-Alloy, Kalzip, Dwall Iridium. Из алюминия можно штамповать детали, в которых кровельная плоскость составляет единое целое с несущими элементами. Это необходимо, к примеру, для создания раздвижных крыш стадионов.

Покрытые специальной разновидностью фторполимера, родственной тефлону, алюминиевые детали крыш выдерживают огромные нагрузки от ветра и осадков. А при сооружении кровель огромных размеров, где общая длина листа от края до края может достигать нескольких десятков метров, используют особую технологию, разработать которую также позволила пластичность алюминия. Чтобы избежать ненадёжного соединения множества небольших листов, на стройплощадку подвозят алюминиевую ленту шириной в несколько метров, свёрнутую в огромный рулон, и прямо на стройплощадке пропускают через специальную машину, делающую ровную ленту профилированной, а значит жёсткой. По специальным направляющим с роликами алюминиевый профиль подают на крышу здания. Эту технологию разработала британская Corus Group, один из мировых лидеров в области производства кровельных алюминиевых листов (ныне в составе Tata Steel).

В нашей же стране алюминиевая архитектура по-настоящему разворачивается только сейчас, с отставанием от мировых темпов, но бодро их нагоняя, — из последних примеров внедрения можно назвать крышу стадиона “Зенит-Арена” в Санкт-Петербурге, объекты казанской Универсиады, сочинский аэропорт, строящийся сейчас в Нижнем Новгороде уникальный легкосплавный мост и другие объекты.

Здание построено, кровля возведена, теперь нужен свет! И тут алюминий снова в тренде. Это не только “крылатый” металл, но ещё и “металл света”. Сейчас в мире горят миллиарды LED-ламп и число их ежесекундно растёт. В каждой лампе установлен алюминиевый радиатор, отводящий лишнее тепло от кристаллов светодиодов, не дающий им перегреться. Но куда более важную роль алюминий играет при изготовлении основы самих светодиодов — лейкосапфира. Так называется искусственный кристалл из особо чистого оксида алюминия. Сейчас тонны сырья для кристаллов в основном завозятся из-за границы, однако недавно в Набережных Челнах при поддержке Ростеха запущена первая в стране линия по производству особо чистого оксида алюминия для выращивания монокристаллов лейкосапфиров. В Алюминиевой ассоциации убеждены, что в течение 2–3 лет наши предприятия смогут полностью заместить импорт в Россию особо чистого оксида алюминия, что резко стимулирует отечественное светодиодное производство.

В нашей жизни — повсюду…

…Просто мы не всегда об этом знаем! Практически все качественные гаджеты сделаны на основе алюминиевых сплавов: рамки и крышки смартфонов, планшетов, ноутбуков, корпуса “пауэрбанков” и многое другое. Спортивный инвентарь, детские коляски, кулинарная посуда, батареи отопления, мебельная фурнитура — список сфер, где задействован лёгкий металл, безграничен. Но почему мы не всегда об этом знаем? Дело в том, что алюминий и его сплавы в “голом виде”, как та, всем известная, но безнадёжно устаревшая алюминиевая ложка, в наши дни почти не встречается. Сегодня бал правит технология анодирования, которая позволяет покрывать детали из алюминия и его сплавов прочной износостойкой плёнкой оксида. Анодирование не пачкает рук и может получить практически любой цвет и текстуру.

Одно из перспективнейших бытовых алюминиевых направлений — велосипедные рамы. Алюминиевая рама очень лёгкая, поэтому и поднимать велосипед, и ездить на нём очень удобно. Рама не ржавеет при повреждениях краски, легирующие добавки делают металл очень прочным, а технологии под названиями “баттинг” и “гидроформинг” позволяют производить трубы с переменной толщиной и с любыми изгибами, облегчая и усиливая раму именно там, где это нужно.

Миллионы велосипедов — огромный рынок! Однако пока рамы всех продаваемых и собираемых в нашей стране двухколёсников — импортные… “Впрочем, в этой сфере наметилась небольшая революция: инженеры “Русала” разработали особый новый сплав, идеально подходящий для велорам, и ведут работу по развитию производства рам в нашей стране, — рассказывает заместитель редактора журнала “Металлоснабжение и сбыт” Леонид Хазанов. — Проект поддерживают “Русал”, как единственный российский производитель алюминия, расположенный в Набережных Челнах завод алюминиевых профилей “Татпроф”, готовый делать трубы для рам, и отечественная компания — сборщик велосипедов “Веломоторс”. Если задуманные масштабы производства будут реализованы, наши рамы должны стать дешевле китайских и при этом куда выше по качеству”.

Россия — мировой алюминиевый лидер, входящий в первую тройку производителей этого металла. СССР начал строить алюминиевые заводы в начале тридцатых годов ХХ века, к середине десятилетия полностью избавившись от импорта. Однако по-настоящему в “алюминиевую эру” мы вступаем, как ни странно, только сейчас. Основной владелец “Русала” Олег Дерипаска неоднократно заявлял, что уровень потребления алюминия в России гораздо ниже общемирового и сегодня наконец настало время сломить этот тренд и приложить максимум усилий и средств для создания перерабатывающих мощностей на территории страны и вытеснить импортную продукцию, к качеству которой зачастую возникает масса вопросов.

Долгие годы инженеры-проектировщики избегали использования алюминия, поскольку в устаревших нормативных документах алюминиевые сплавы и композиты просто не фигурировали — сегодня же нормативы, ГОСТы и СНИПы пересматриваются и обновляются в духе времени. И практически все сферы промышленности ждут открытия для себя новых областей использования этого металла.

Ссылка на основную публикацию
Adblock
detector