Какие есть виды сплавов

Какие есть виды сплавов

Сплавы

Классификация сплавов

Существует несколько способов классификации сплавов:

  • по способу изготовления (литые и порошковые сплавы);
  • по способу получения изделия (литейные, деформируемые и порошковые сплавы);
  • по составу (гомогенные и гетерогенные сплавы);
  • по характеру металла – основы (черные –основа Fe, цветные – основа цветные металлы и сплавы редких металлов – основа радиоактивные элементы);
  • по числу компонентов (двойные, тройные и т.д.);
  • по характерным свойствам (тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие и др.);
  • по назначению (конструкционные, инструментальные и специальные).

Свойства сплавов

Свойства сплавов зависят от их структуры. Для сплавов характерны структурно-нечувствительные (определяются природой и концентрацией элементов, составляющих сплавы) и структурно-чувствительные свойства (зависят от характеристик основы). К структурно-нечувствительным свойствам сплавов относятся плотность, температура плавления, теплоту испарения. тепловые и упругие свойства, коэффициент термического расширения.

Все сплавы проявляют свойства, характерные для металлов: металлический блеск, электро- и теплопроводность , пластичность и др.

Также все свойства, характерные для сплавов можно разделить на химические (отношение сплавов к воздействию активных сред – вода, воздух, кислоты и т.д.) и механические (отношение сплавов к воздействию внешних сил). Если химические свойства сплавов определяют путем помещения сплава в агрессивную среду, то для определения механических свойств применяют специальные испытания. Так, чтобы определить прочность, твердость, упругость, пластичность и другие механические свойства проводят испытания на растяжение, ползучесть, ударную вязкость и др.

Основные виды сплавов

Широкое применение среди всевозможных сплавов нашли различные стали, чугун, сплавы на основе меди, свинца, алюминия, магния, а также легкие сплавы.

Стали и чугуны – сплавы железа с углеродом, причем содержание углерода в стали до 2%, а в чугуне 2-4%. Стали и чугуны содержат легирующие добавки: стали– Cr, V, Ni, а чугун – Si.

Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.

Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.

В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.

Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.

Сплавы на основе меди называют латунями, в качестве добавок они содержат от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20–36% Zn – желтой (альфа-латунью).

Среди сплавов на основе свинца выделяют двухкомпонентные (сплавы свинца с оловом или сурьмой) и четырехкомпонентные сплавы (сплавы свинца с кадмием, оловом и висмутом, сплавы свинца с оловом, сурьмой и мышьяком), причем (характерно для двухкомпонентных сплавов) при различном содержании одинаковых компонентов получают разные сплавы. Так, сплав, содержащий 1/3 свинца и 2/3 олова — третник (обычный припой) используется для пайки трубо- и электропроводов, а сплав, содержащий 10-15% свинца и 85-90% олова – пьютер, ранее применялся для отливки столовых приборов.

Сплавы на основе алюминия двухкомпонентные – Al-Si, Al-Mg, Al-Cu. Эти сплавы легко получать и обрабатывать. Они обладают электро- и теплопроводностью, немагнитны, безвредны в контакте с пищевыми, взрывобезопасны. Сплавы на основе алюминия нашли применение для изготовления легких поршней, применяются в вагоно-, автомобиле- и самолетостроении, пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи.

Примеры решения задач

Задание Сколько кг олова надо добавить к куску бронзы (m=4кг), содержащему 15% олова, чтобы повысить содержание олова в нем до 60% от общей массы?
Решение Пусть смешали 2 сплава, причем второй сплав содержит 100% олова и не содержит других компонентов. Найдем массы олова в сплавах:

Тогда масса сплавов будет:

Отношение массы олова в новом сплаве к массе нового сплава составляет:

Сплавы металлов

Металлы используются человеком уже много тысячелетий. По именам металлов названы определяющие эпохи развития человечества: Бронзовый Век, Железный Век, Век Чугуна и т.д. Ни одно металлическое изделие из числа окружающих нас не состоит на 100% из железа, меди, золота или другого металла. В любом присутствуют сознательно введенные человеком добавки и попавшие помимо воли человека вредные примеси.

Абсолютно чистый металл можно получить только в космической лаборатории. Все остальные металлы в реальной жизни представляют собой сплавы — твердые соединения двух или более металлов (и неметаллов), полученные целенаправленно в процессе металлургического производства.

Классификация

Металлурги классифицируют сплавы металлов по нескольким критериям:

  1. метод изготовления:
    • литые;
    • порошковые;
  2. технология производства:
    • литейные;
    • деформируемые;
    • порошковые;
  3. однородность структуры:
    • гомогенные;
    • гетерогенные;

Виды сплавов по их основе

Металлы и сплавы на их основе имеют различные физико-химические характеристики.

Металл, имеющий наибольшую массовую долю, называют основой.

Свойства сплавов

Свойства, которыми обладают металлические сплавы, подразделяются на:

  1. Структурно — нечувствительные. Они обуславливаются свойствами компонентов, и их процентным содержанием. К ним относятся :
    • плотность;
    • температура плавления;
    • тепловые и упругие характеристики;
    • коэффициент термического расширения;
  2. структурно — чувствительные. Определяются свойствами элемента — основы.
  3. https://youtu.be/qgzo40bfL1o
  4. Все сплавные материалы в той или иной мере проявляют характерные металлические свойства:
    • блеск;
    • пластичность;
    • теплопроводность;
    • электропроводность.
  5. Кроме того, свойства подразделяют на:
    • Химические, определяемые взаимоотношениями материала с химически активными веществами.
    • Механические, определяемые взаимодействием с другими физическими телами.

Для количественного выражения этих свойств вводят специальные физические величины и константы, такие, как предел упругости, модуль Гука, коэффициент вязкости и другие.

Основные виды сплавов

Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.

Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец, фосфор.

Если содержание углерода более 2,4% , такое вещество называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.

Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.

Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.

Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.

Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.

Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.

Цинковые сплавы

Сплавы на основе цинка отличаются низкими температурами плавления, стойкостью к коррозии и отличной обрабатываемостью. Они применяются в машиностроении, производстве вычислительной и бытовой техники, в издательском деле. Хорошие антифрикционные свойства позволяют использовать цинковые сплавы для вкладышей подшипников.

Титановые сплавы

Титан не самый доступный металл, он сложен в производстве и тяжело обрабатывается. Эти недостатки искупаются его уникальными свойствами титановых сплавов: высокой прочностью, малым удельным весом, стойкостью к высоким температурам и агрессивным средам. Эти материалы плохо поддаются механической обработке, но зато их свойства можно улучшить с помощью термической обработки.

Легирование алюминием и небольшими количествами других металлов позволяет повысить прочность и жаростойкость. Для улучшения износостойкости в материал добавляют азот или цементируют его.

Область применения титановых сплавов

Металлические сплавы на основе титана используются в следующих областях:

Алюминиевые сплавы

Если первая половина XX века была веком стали, то вторая по праву назвалась веком алюминия.

Трудно назвать отрасль человеческой жизнедеятельности, в которой бы не встречались изделия или детали из этого легкого металла.

Алюминиевые сплавы подразделяют на:

      • Литейные (с кремнием). Применяются для получения обычных отливок.
      • Для литья под давлением (с марганцем).
      • Увеличенной прочности, обладающие способностью к самозакаливанию (с медью).

Основные преимущества соединений алюминия:

      • Доступность.
      • Малый удельный вес.
      • Долговечность.
      • Устойчивость к холоду.
      • Хорошая обрабатываемость.
      • Электропроводность.

Основным недостатком сплавных материалов является низкая термостойкость. При достижении 175°С происходит резкое ухудшение механических свойств.

Еще одна сфера применения — производство вооружений. Вещества на основе алюминия не искрят при сильном трении и соударениях. Их применяют для выпуска облегченной брони для колесной и летающей военной техники.

Весьма широко применяются алюминиевые сплавные материалы в электротехнике и электронике. Высокая проводимость и очень низкие показатели намагничиваемости делают их идеальными для производства корпусов различных радиотехнических устройств и средств связи, компьютеров и смартфонов.

Слитки из алюминиевых сплавов

Присутствие даже небольшой доли железа существенно повышает прочность материала, но также снижает его коррозионную устойчивость и пластичность. Компромисс по содержанию железа находят в зависимости от требований к материалу. Отрицательное влияние железа скомпенсируют добавлением в состав лигатуры таких металлов, как кобальт, марганец или хром.

Конкурентом алюминиевым сплавам выступают материалы на основе магния, но ввиду более высокой цены их применяют лишь в наиболее ответственных изделиях.

Медные сплавы

Обычно под медными сплавами понимают различные марки латуни. При содержании цинка в 5-45% латунь считается красной (томпак), а при содержании в 20-35%- желтой.

Благодаря отличной обрабатываемости резанием, литьем и штамповкой латунь — идеальный материал для изготовления мелких деталей, требующих высокой точности. Шестеренки многих знаменитых швейцарских хронометров сделаны из латуни.

Малоизвестный сплав меди и кремния называют кремнистой бронзой. Он отличается высокой прочностью. По некоторым источникам, из кремнистой бронзы ковали свои мечи легендарные спартанцы. Если вместо кремния добавить фосфор, то получится отличный материал для производства мембран и листовых пружин.

Твердые сплавы

Это устойчивые к износу и обладающие высокой твердостью материалы на основе железа, к тому же сохраняющие свои свойства при высоких температурах до 1100 о С.

В качестве основной присадки применяются карбиды хрома, титана, вольфрама, вспомогательными являются никель, кобальт, рубидий, рутений или молибден.

Основными сферами применения являются:

      • Режущий инструмент (фрезы, сверла, метчики, плашки, резцы и т.п.).
      • Измерительный инструмент и оборудование (линейки, угольники, штангенциркули рабочие поверхности особой ровности и стабильности).
      • Штампы, матрицы и пуансоны.
      • Валки прокатных станов и бумагоделательных машин.
      • Горное оборудование (дробилки, шарошки, ковши экскаваторов).
      • Детали и узлы атомных и химических реакторов.
      • Высоконагруженные детали транспортных средств, промышленного оборудования и уникальных строительных конструкций, таки, например, как башня Бурж — Дубай.

Области применения твердых сплавов

Существуют и другие области применения твердосплавных веществ.

Какие бывают виды и типы металлов и их сплавов

  • Твёрдость — устойчивость материала к проникновению другого.
  • Прочность — сохранение формы, структуры и размера после воздействия динамической, статической и знакопеременной нагрузки.
  • Упругость — изменение формы без нарушения целостности при деформации и возможность возвращения к первоначальному виду.
  • Пластичность — удерживание полученной формы и целостности под воздействием сил.
  • Износостойкость — сохранение наружной и внутренней целостности под воздействием продолжительного трения.
  • Вязкость — удерживание целостности под увеличивающимся физическим воздействием.
  • Усталость — число и период циклических воздействий, выдерживаемых металлом без изменения целостности.
  • Жароустойчивость — стойкость к высоким температурам.

Первостепенным признаком металлов выступает отрицательный коэффициент проводимости электричества, который при понижении температуры повышается, а при повышении — частично или полностью теряется. Второстепенными признаками материалов являются металлический блеск и высокая температура плавления. Кроме того, некоторые типы металлов, являющихся соединениями, могут быть восстановителями при окислительно-восстановительных реакциях.

Металлические свойства взаимосвязаны, так как составляющие материала влияют на все остальные параметры. Металлы подразделяются на чёрные и цветные, но их классифицируют по многим признакам.

Группа с железом и его сплавами

Чёрным металлам свойственны внушительная плотность, большая температура плавления и тёмно-серый окрас. К этой группе в основном относят железо с его сплавами. Для придания последним специфических свойств используют легирующие компоненты.

Подгруппы чёрных видов металлов:

  • Металлы чёрной группы представлены сплавами железа с разным содержанием углерода и содержанием дополнительных химических элементов: кремнием, серой или фосфором. Популярными материалами выступают сталь и чугун. В стали содержится до 2% углерода. Ей характерна хорошая пластичность и высокие технологические показатели. В чугуне содержание углерода может достигать 5%. Свойства сплава могут отличаться с различными химическими элементами: с содержанием серы и фосфора повышается хрупкость, а с хромом и никелем чугун становится стойким к высоким температурам и коррозии.

    Цветные разновидности

    Цветные металлы более востребованы, чем чёрные, поскольку большая часть из них представляет собой сырье для производства металлопроката. Эта группа материалов отличается широкой сферой применения: они используются в металлургии, машиностроении, радиоэлектронике, сфере высоких технологий и других областях.

    Классификация по физическим параметрам:

    • Тяжёлые — кадмий, никель, олово, ртуть, свинец, цинк. В природных условиях они образуются в прочных соединениях.
    • Лёгкие — алюминий, магний, стронций, титан и другие. Характеризуются невысокой температурой плавления.
    • Благородные — золото, платина, родий, серебро. Для них свойственна повышенная стойкость к коррозии.

    Цветные металлы отличаются небольшой плотностью, хорошей пластичностью, невысокой температурой плавления и преобладающими цветами (белым, жёлтым, красным). Из них изготавливается различная техника. Поскольку прочность материалов довольно низкая, их не используют в чистом виде. Из них производят лёгкие сплавы различного назначения.

    Тяжёлые металлы

    Материалы этой группы характеризуются внушительным атомным весом и плотностью, превышающей показатель у железа.

    Большим спросом пользуется медь, которая выступает проводником электрического тока. Она отличается розовато-красным оттенком, маленьким удельным сопротивлением, хорошей теплопроводностью, небольшой плотностью, прекрасной пластичностью и устойчивостью к коррозии. В сфере техники используют сплавы меди: бронзу (с добавлением алюминия, никеля или олова) и латунь (с цинком). Бронзу применяют в производстве мембран, круглых и плоских пружин, червячных пар и разной арматуры. Из латуни изготавливают ленты, листы, проволоку, трубы, втулки, подшипники.

    Группа тяжёлых металлов выступает одной из главных причин загрязнения окружающей среды. Токсичные вещества поступают в океаны через сточные воды с предприятий отрасли промышленности. Некоторые разновидности тяжёлой группы могут накапливаться в живых организмах.

    Ртуть относится к высокотоксичным металлам для людей. При сжигании угля на электростанциях её соединения переходят в атмосферу, а затем преобразуются в осадки и попадают в водоёмы. Обитатели пресноводных и морских систем накапливают большое количество опасного вещества, что приводит к отравлениям или смерти людей.

    Кадмий считается рассеянным и достаточно редким элементом, способным попадать в океан через сточные воды с металлургических предприятий. Это вещество в малом количестве есть в человеческом организме, но при высоком показателе он разрушает костную ткань и приводит к анемии.

    Свинец в рассеянном состоянии присутствует почти везде. При избытке металла в организме человека наблюдаются проблемы со здоровьем.

    Мягкие виды

    Алюминий серебристо-белого цвета характеризуется лёгкостью, высокой устойчивостью к коррозии, хорошей электропроводностью и пластичностью. Характеристики материала сделали его полезным в самолётостроении, электропромышленности и пищевом производстве. Алюминиевые сплавы применяются в сфере машиностроения.

    Магнию свойственна низкая коррозийная устойчивость, зато лёгкий материал незаменим в технической области. В сплавах с этим металлом используют алюминий, марганец и цинк, которые хорошо режутся и отличаются высокой прочностью. Магниевые сплавы используют в производстве корпусов для фотоаппаратов, двигателей и других приборов.

    Титан применяют в машиностроении, ракетной отрасли и химической промышленности. Сплавы с содержанием этого вещества характеризуются небольшой плотностью, отличными механическими свойствами, коррозийной устойчивостью и податливостью обработке давлением.

    Благородные материалы

    Некоторые разновидности металлов редко встречаются в природе и отличаются трудоёмкими способами добычи. Металлы благородной группы — это:

    • Золото.
    • Серебро.
    • Платина.
    • Родий.

    Люди узнали о золоте ещё в эпоху каменного века. Самый дорогой металл в мире можно встретить в природе в виде самородков, в которых присутствует небольшое количество примесей. Также он встречается в сплавах с серебром.

    Золото отличается теплопроводностью и очень низким сопротивлением. Из-за хорошей ковкости материал применяют в изготовлении ювелирных изделий.

    Серебро идёт вторым по ценности после золота. В природе оно обычно встречается в качестве серебряной руды. Серебру характерны мягкость, пластичность, тепло- и электропроводность.

    Платина, открытая в середине XX века, выступает редким материалом, который можно отыскать только в залежах различных сплавов. Её довольно трудно добывать. Ценность металла заключается в том, что он не подвергается воздействию кислот. При нагревании платина не изменяется в окраске и не окисляется.

    Родий тоже относится к благородным металлам. Он обладает серебристым цветом с голубым отливом. Родий отличает устойчивость к химическим воздействиям и перепадам температур, но хрупкий металл портится под механическим воздействием.

    Классификация по твёрдости

    Металлы также делят на твёрдые и мягкие.

    Самый твёрдый из чистейших материалов в мире — это хром. Он относится к тугоплавким разновидностям и отлично поддаётся механической обработке. Другим твёрдым элементом выступает вольфрам. Он характеризуется высокой температурой плавления, теплоустойчивостью и гибкостью. Из него выковывают различные детали и изготавливают небольшие элементы, необходимые для осветительных приборов. Вольфрам часто присутствует в тяжёлых сплавах. Твёрдые металлы сложно не только добывать, но и просто найти на планете. В основном их содержат упавшие на Землю метеориты.

    К самым мягким металлам относят калий, натрий, рубидий и цезий. Также в этой группе состоят золото, серебро, медь и алюминий. Золото присутствует в морских комплексах, осколках гранитов и человеческом организме. Внешние факторы способны разрушить ценный металл. Мягкое серебро применяют в изготовлении посуды и ювелирных украшений. Натрий широко используют практически в любой промышленной отрасли. Ртуть, выступающую самым мягким металлом в мире, применяют сельскохозяйственной и химической промышленности, а также электротехнике

    Какие есть виды сплавов

    Владельцы сайта

    • Галина Пчёлкина

    Состав и применение некоторых сплавов

    Состав некоторых сплавов

    Mn – 2, Al – 2, Si – 1, Fe – 0,5, остальное Ni

    Pb – 80, Sb – 17, Cu – 1,5

    Al – 4,5-5,5, остальное Cu

    Be – 2,0-2,5, остальное Cu

    Cu – 96-98, Si – 2-3,5

    Cu – 89-91, Sn – 9-11

    Cu – 93-94, Sn – 6-7, P – 0,3-0,4

    Bi – 50, Pb – 25, Sn – 12,5, Cd – 12,5

    Al – 93-96, Cu – 3,5-5, Mg – 0,3-1, Mn – 0,3-1

    Cu – 57-60, Zn – 40-43

    Ni – 39-41, Mn – 0,4-0,6, остальное Cu

    Cu – 85, Mn – 11-13, Ni – 2,5-3,5

    Ni – 18-20, остальное Cu

    Ni – 15, Zn – 20, Cu – 65

    Ni – 64-71, Cr – 14-16, Fe – 14-17, Mn – 1-1,8

    Sn – 14-90, остальное Pb

    Al – 85-90, Si – 10-15

    Сплав для дроби

    Sb – 0,5-1,5, остальное Pb

    C до 2, добавки Si, S, P, O, N до 1, остальное Fe

    Твердый сплав “видиа”

    Твердый сплав “победит”

    Твердый сплав “альфа”

    Со – 8, 6 или 8, TiC – 21, 15 или 5, остальное WC

    Pb – 75, Sb – 20-24, Sn – 1,8-4,3, Cu – 1

    Cu – 89-91, Zn – 9-11

    Cr – 9,5, Fe – 0,3, остальное Ni

    Хромистая нержавеющая сталь

    Cr – 13-30, C до 2, остальное Fe

    Важнейшие сплавы металлов: свойства и применение

    Al, Mg, Si, Cu, Zn, Mn, Li, Be

    Легкость, высокая электро- и теплопроводность, коррозионная стойкость, высокая удельная прочность

    Конструкционные материалы в авиации, строительстве, машиностроении и др.; электротехнические устройства и материалы

    Hg и другие металлы

    В зависимости от соотношения ртути и др. металла может быть (при комнатной температуре) жидкой, полужидкой или твёрдой

    Золочение металлических изделий, производство зеркал, стоматология, реактив-восстановитель в химии и металлургии

    Mo, Re, Cu, Ni, Ag, оксиды (ThO2), карбиды (TaC) и др.

    Пластичность, жаропрочность и высокая термо-эдс

    Детали электровакуумных приборов, высокотемпературных термопар, детали двигателей ракет и самолётов

    Железоуглеродистые сплавы (чугун, сталь, ферросплавы)

    Fe, C, Р , S, Mn, Si, N, Cr, Ni, Mo, W, V, Ti, Со , Cu и др .

    Механическая прочность, твердость, упругость, коррозионная устойчивость, вязкость и др.

    Конструкционные материалы для всех областей техники, технологии, хозяйства, машины, инструмент

    Au, Ag, Cu, Pt, Pd, Sb, Bi, Pb, Hg

    Сплав с Ag при 20—40% Ag зеленовато-жёлтый, при 50% Ag — бледно-жёлтый; мягкий и ковкий; сплавы Au с Cu красновато-жёлтые; более твердые и упругие, чем чистое золото

    Золочение металлических изделий, изготовление монет, ювелирных изделий, зубных протезов, электрических контактов

    Sn, Bi, In, Pb, Cd, Zn, Sb, Ga, Hg и др .

    Низкие температуры плавления (не выше 232 °С); при содержании Bi более 55% расширяются при затвердевании

    Изготовление припоев, плавких предохранителей в электроаппаратуре, прессформ и моделей для изготовления отливок сложной формы из металлов и пластмасс, металлические замазки

    Mg, Al, Zn, Mn, Zr, Th, Li, La, Nd, Y, Ag, Cd, Be

    Лёгкость, прочность, коррозионная стойкость

    Высоконагруженные детали из прессованных полуфабрикатов, штамповок и поковок в автомобилестроении, панели, штамповки сложной формы, сварные конструкции

    Cu, Zn, Sn, Al, Ni, Be, P

    Прочность, высокая электропроводность, коррозионная стойкость, пластичность

    Трубы, теплотехническая аппаратура, подшипники, шестерни, втулки, пружины, детали приборов точной механики, термопары, фасонные детали, декоративно-прикладные изделия и скульптура

    Ферромагнетизм, высокая пластичность и коррозионная стойкость, отсутствие аллотропических превращений, химическая стойкость

    Конструкционные материалы с высокой стойкостью к агрессивным средам, ферромагнитные изделия, магнитострикционные материалы

    Sn, Pb, Sb, Cu, Zn, Cd и др.

    низкая температура плавления, мягкость, коррозионная стойкость; антифрикционные свойства

    Легкоплавкие сплавы (припой, полуда) и подшипниковые материалы (баббит)

    Pt, Rh, Ir, Pd, Ru, Ni, Co, Cu, W, Мо

    Высокая температура плавления, коррозионная стойкость, механическая прочность, каталитические свойства

    изготовление термопар электрических контактов, потенциометров, постоянных магнитов, высокотемпературных припоев, катализаторы, лабораторная посуда

    Pb, Fe, Cu, Sb, Sn, Cd, Са, Ca, Mg, Li, К, Na

    Прочность, твёрдость, антифрикционные, свойства, низкая температура плавления свинца, коррозионная стойкость, хорошая адгезия со многими металлами и сплавами

    Изготовление или облицовка кислотоупорной аппаратуры и трубопроводов, изготовление оболочек низковольтных и силовых кабелей, припои и полуды, подшипники, типографские сплавы, грузы, балласты, отливка дроби, сердечников пуль, изготовление решёток для свинцовых аккумуляторов

    WC, TiC, TaC; связующие металлы: Co, Ni, Mo, сталь

    Высокая твердость, тугоплавкость, износоустойчивость, коррозионная стойкость

    Цельнотвердосплавные изделия (инструмент) для обработки металлов, сплавов и неметаллических материалов, для оснащения рабочих частей буровых инструментов и как конструкционные материалы

    Типографские сплавы (гарт)

    низкая температура плавления (240—350 °С), хорошие литейные свойства

    изготовления литых стереотипов (полиграфическая промышленность) и элементов набора (шрифты др.).

    Al, V, Mo, Mn, Sn, Zr, Cr, Cu, Fe, W, Ni, Si; Nb и Та

    Лёгкость, высокая прочность в широком интервале температур от -250 °С до 300-600 °С, коррозионная стойкость

    Конструкционные материалы в авиации, ракетостроении, химическая аппаратура

    Невысокая температура плавления, легкость обработки давлением и резанием, сварки и пайки, возможность нанесения покрытий электрохимическим и химическим способами, удовлетворительная коррозионная стойкость

    Конструкционные и конструкционно-декоративные детали в автомобильной промышленности, электромашиностроении, оргтехнике, вкладыши подшипников, бытовые изделия, сувениры

    Сплавы, их классификация и применение.

    Сплавы ― это макроскопически однородные материалы, имеющие металлические свойства и состоящие из смеси двух или большего числа химических элементов, из которых хотя бы один является металлом. Многие металлические сплавы имеют один или несколько металлов в качестве основы с малыми добавками других специально вводимых в сплав легирующих и модифицирующих элементов. Также в составе сплава могут содержаться неудалённые примеси (природные, технологические и случайные).

    По способу изготовления различают два типа сплавов:

    • Литые сплавы изготавливаются самым распространенным способом – кристаллизацией однородной смеси их расплавленных компонентов.
    • Порошковые сплавы образуются путем прессования смеси порошков компонентов с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.

    По способу получения заготовки (изделия) различают два типа сплавов:

    • литейные (например, чугуны, силумины);
    • деформируемые (например, стали) и порошковые сплавы.

    В промышленности используют большое количество сплавов – конструкционных, инструментальных, специальных (см. Табл. 1, 2). Их различают по назначению:

    Конструкционные сплавы со специальными свойствами (например, искробезопасность, антифрикционные свойства):

    Сплавы для заливки подшипников:

    Сплавы для измерительной и электронагревательной аппаратуры:

    Для изготовления режущих инструментов:

    В промышленности также используются жаропрочные, легкоплавкие и коррозионностойкие сплавы, термоэлектрические и магнитные материалы, а также аморфные сплавы.

    Число металлических сплавов, применяемых в наши дни, очень велико и непрерывно растет. Их принято разделять на две большие категории: сплавы на основе железа и сплавы цветных металлов. Ниже перечислим наиболее важные сплавы промышленного значения и укажем основные области их применения.

    Сплавы железа с углеродом, содержащие его до 2%, называются сталями. При введении легирующих элементов, таких, как хром, ванадий, никель, сталь становится легированной. Из всех видов металлов и сплавов, стали занимают первое место по объему их производства. Сфера их применения чрезвычайно широка, сложно было бы перечислить все возможные варианты. В общем можно сказать, что малоуглеродистые стали (менее 0,25% углерода) используется в качестве конструкционного материала, а стали с более высоким содержанием углерода (более 0,55%) идут на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали применяются в машиностроении всех видов и в производстве быстрорежущих инструментов.

    Чугуном называют сплав железа с 2–4% углерода. Кроме того, важным компонентом чугуна является кремний. Из чугуна отливают самые разнообразные изделия, имеющие утилитарные функции, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.

    Такие сплавы в основном представлены различными видами латуни, т.е. медными сплавами, содержащими от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20–36% Zn – желтой (альфа-латунью). Латуни применяются в производстве различных мелких деталей, где требуются хорошая обрабатываемость и формуемость. Популярны также сплавы меди с оловом, кремнием, алюминием или бериллием – это бронзы. Например, сплав меди с кремнием ― кремнистая бронза. Фосфористая бронза (медь с 5% олова и следовыми количествами фосфора) обладает высокой прочностью и применяется для изготовления пружин и мембран.

    Такие сплавы широко применяются для пайки. Обычный припой (третник) состоит из одной части свинца и двух частей олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Кроме того, из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Сплавы свинца с определенным количеством кадмия, олова и висмута могут иметь точку плавления, лежащую значительно ниже точки кипения воды (

    70° C); по этой причине из них делают плавкие пробки клапанов спринклерных систем противопожарного водоснабжения. Сплав пьютер, из которого до сих пор производят декоративную посуду и украшения, содержит 85–90% олова (остальное – свинец). Свинец содержится в подшипниковых сплавах, называемых баббитами, в них также присутствуют такие химические элементы, как олово, сурьма и мышьяк.

    В современной промышленности необходимы легкие сплавы с высокой прочностью, обладающие хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.

    К этим сплавам относятся литейные сплавы (алюминий Al – кремний Si), сплавы для литья под давлением (алюминий Al – магний Mg) и самозакаливающиеся сплавы повышенной прочности (алюминий Al – медь Cu). Алюминиевые сплавы экономичны, легкодоступны, они достаточно прочны при низких температурах и легко обрабатываются (легко куются, штампуются, пригодны для глубокой вытяжки, волочения, экструдирования, литья, хорошо свариваются и обрабатываются на металлорежущих станках). Необходимо заметить, что механические свойства всех алюминиевых сплавов заметно ухудшаются при температурах выше приблизительно 175° С. Но благодаря образованию защитной оксидной пленки на поверхности алюминиевые сплавы проявляют хорошую коррозионную стойкость в большинстве обычных агрессивных сред. Эти сплавы хорошо проводят электричество и тепло, обладают высокой отражательной способностью, немагнитны, безвредны в контакте с пищевыми продуктами (поскольку продукты коррозии бесцветны, не имеют вкуса и нетоксичны), взрывобезопасны (поскольку не дают искр) и хорошо поглощают ударные нагрузки. Благодаря такому сочетанию свойств алюминиевые сплавы служат хорошими материалами для легких поршней, применяются в вагоно-, автомобиле- и самолетостроении, в пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве осветительных отражателей, технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи.

    Примесь железа, от которой трудно избавиться, повышает прочность алюминия при высоких температурах, но снижает коррозионную стойкость и пластичность при комнатной температуре. Кобальт, хром и марганец ослабляют охрупчивающее действие железа и повышают коррозионную стойкость. При добавлении лития к алюминию повышаются модуль упругости и прочность, что делает такой сплав весьма привлекательным для авиакосмической промышленности. К сожалению, при своем превосходном отношении предела прочности к массе (удельной прочности) сплавы алюминия с литием обладают низкой пластичностью.

    Магниевые сплавы легки, характеризуются высокой удельной прочностью, а также хорошими литейными свойствами и превосходно обрабатываются резанием. Поэтому они применяются для изготовления деталей ракет и авиационных двигателей, корпусов для автомобильной оснастки, колес, бензобаков, портативных столов и т.п. Некоторые магниевые сплавы, обладающие высоким коэффициентом вязкостного демпфирования, идут на изготовление движущихся частей машин и элементов конструкции, работающих в условиях нежелательных вибраций.

    Магниевые сплавы имеют свои недостатки, они довольно мягки, плохо сопротивляются износу и не очень пластичны. Зато они легко формуются при повышенных температурах, пригодны для электродуговой, газовой и контактной сварки, а также могут соединяться пайкой (твердым), болтами, заклепками и клеями. Такие сплавы не отличаются особой коррозионной стойкостью по отношению к большинству кислот, пресной и соленой воде, но стабильны на воздухе. От коррозии их обычно защищают поверхностным покрытием – хромовым травлением, дихроматной обработкой, анодированием. Магниевым сплавам можно также придать блестящую поверхность либо плакировать медью, никелем и хромом, нанеся предварительно покрытие погружением в расплавленный цинк. Анодирование магниевых сплавов повышает их поверхностную твердость и стойкость к истиранию. Магний – металл химически активный, а потому необходимо принимать меры, предотвращающие возгорание стружки и свариваемых деталей из магниевых сплавов.

    Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот.

    Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150–430° C), а также в некоторых химических аппаратах специального назначения. Из титано-ванадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титан-алюминиево-ванадиевый сплав – основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов.

    Пластичный бериллиевый сплав можно получить, например, вкрапляя хрупкие зерна бериллия в мягкую пластичную матрицу, такую, как серебро. Сплав этого состава удалось холодной прокаткой довести до толщины, составляющей 17% первоначальной. Бериллий превосходит все известные металлы по удельной прочности. В сочетании с низкой плотностью это делает бериллий пригодным для устройств систем наведения ракет. Модуль упругости бериллия больше, чем у стали, и бериллиевые бронзы применяются для изготовления пружин и электрических контактов. Чистый бериллий используется как замедлитель и отражатель нейтронов в ядерных реакторах. Благодаря образованию защитных оксидных слоев он устойчив на воздухе при высоких температурах. Главная трудность, связанная с бериллием, – его токсичность. Он может вызывать серьезные заболевания органов дыхания и дерматит.

    Читайте также:  Как правильно поставить заклепку
Elton-Zoloto.ru