Какой металл не растворяется в воде
Elton-zoloto.ru

Драгоценные металлы

Какой металл не растворяется в воде

Уроки по неорганической химии для подготовки к ЕГЭ

Свойства простых веществ:

Свойства сложных веществ:

Особенности протекания реакций:

Цвета соединений, знание которых необходимо для сдачи ЕГЭ

1. Медь – мягкий пластичный металл розового цвета. Степени окисления: +1, +2.

Cu2O – кристаллическое, нерастворимое в воде вещество кирпично-красного цвета.

CuO – кристаллы чёрного цвета, практически нерастворимые в воде.

Cu(OH)2 – голубое аморфное или кристаллическое вещество; практически не растворимо в воде.

CuSO4 – кристаллическое вещество белого цвета, хорошо растворяется в воде. Из водных растворов кристаллизуется пентагидрат CuSO4·5H2O – медный купоро́с, кристаллы голубого цвета (при нагревании снова теряет воду и становится белым). Водный раствор CuSO4 также голубого цвета.

2. Цинк – металл голубовато-белого цвета, мягкий, хрупкий. Степень окисления: +2.

ZnO, Zn(OH)2, ZnS – белые твердые вещества, нерастворимые в воде.

3. Алюминий – легкий металл серебристо-белого цвета. Степень окисления: +3.

Al2O3, Al(OH)3 – белые твердые вещества, нерастворимые в воде.

AlPO4 – твёрдое, белое кристаллическое вещество, нерастворимое в воде.

4. Серебро – блестящий белый мягкий пластичный металл. Степень окисления: +1.

AgCl – белое твердое нерастворимое в воде вещество.

AgBr – светло-желтое твердое нерастворимое в воде вещество.

AgI – твердое нерастворимое в воде вещество желтого цвета.

Ag2O – твердое нерастворимое в воде вещество черного цвета.

Ag3PO4 – твердое нерастворимое в воде вещество желтого цвета.

5. Железо – серебристо-серый мягкий ковкий металл. Степени окисления: +2, +3, +6.

FeO – твердое нерастворимое в воде вещество черного цвета.

Fe(OH)2 – серо-зеленый осадок, студенистый осадок зеленого цвета. Не растворяется в воде.

Fe2O3, Fe(OH)3 – твердые красно-коричневые (бурые), нерастворимые в воде соединения.

Fe3O4 – твердое черное вещество. Не растворяется в воде.

FeCl3 – раствор желтого цвета.

6. Сера – желтое нерастворимое в воде вещество. Степени окисления: -2, +4, +6.

SO2 – бесцветный газ с неприятным запахом; газ, образующийся в момент зажигания спички

H2SO4 – тяжелая бесцветная жидкость, растворяется в воде с сильным разогреванием раствора.

7. Хром – твёрдый металл голубовато-белого цвета.

CrO – твердое вещество ченого цвета.

Cr2O3 – твердое вещество темно-зеленого цвета.

CrO3 – твердое вещество красного цвета.

Na2Cr2O7 и другие дихроматы – соединения оранжевого цвета.

Na2CrO4 и другие хроматы – соединения желтого цвета.

Cr2(SO4)3 – в растворе сине-фиолетового цвета (кислотная среда).

K3[Cr(OH)6] – в растворе зеленого цвета (щелочная среда).

8. Марганец – металл серебристо-белого цвета.

MnO2 – твердое нерастворимое в воде вещество бурого цвета.

Mn(OH)2 – белый осадок.

KMnO4 – пурпурные кристаллы, растворяется в воде с образованием фиолетового раствора.

K2MnO4 – растворимая соль темно-зеленого цвета.

Mn(NO3)2, MnCl2, MnBr2 и некоторые другие соли Mn +2 – как правило, розовые растворимые в воде соединения.

9. Фосфор – неметалл. Основные модификации: белый, красный и черный фосфор.

Ag3PO4 – твердое нерастворимое в воде вещество желтого цвета.

AlPO4 – твердое нерастворимое в воде вещество белого цвета.

Li3PO4 – твердое нерастворимое в воде вещество белого цвета.

10. Свинец – ковкий, тяжёлый металл серебристо-белого цвета.

PbS – осадок черного цвета.

PbSO4 – осадок белого цвета.

PbI2 – осадок ярко-желтого цвета.

11. Соединения бария:

BaSO4 – белый осадок растворимый в кислотах

BaSO3 – белый осадок растворимый в кислотах

BaCrO4 – осадок желтого цвета

12. Другие соединения:

CaCO3 – осадок белого цвета

NH3 – аммиак, бесцветный газ с резким запахом

CO2 – газ тяжелее воздуха, без цвета и запаха, играющий важную роль в процессе фотосинтеза.

NO2 – газ бурого цвета (лисий хвост)

H2SiO3 – бесцветный студенистый осадок

Металлы в воде

Американские токсикологи считают, что свинцовый водопровод стал причиной падения Римской империи. И правда, свинец в воде может стать убийцей для организма, впрочем, как и другие металлы. Что делать, чтобы обезопасить себя?

Свинец

Свинец – токсичный металл. Он откладывается в костях скелета и влияет на центральную и периферическую нервную систему. Это особенно опасно для детей младше 6 лет. Есть данные о том, что свинец способствует развитию новообразований в почках. Помимо этого, свинец угнетает иммунитет.

Ртуть

Ртуть – уникальный металл. Это единственный металл-жидкость, который может испаряться. Существуют микроорганизмы, способные включать ртуть в органические соединения. В природе ртуть бывает в самородном, жидком виде, а также входит в состав минералов. Некоторая часть ртути свободно испаряется из трещин в земной коре. Около половины всей используемой ртути приходится на батарейки, люминесцентные лампы, выключатели и измерительные приборы.

Ртуть и ее соединения нарушают белковый обмен, поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании – дыхательные пути. Особенно опасны выбросы в воду с образованием метилртути – соединения более опасного, чем сама ртуть. Оно способно накапливаться в организме и вызывать болезнь Минамата. Болезнь так названа по названию озера Минамата в Японии, куда промышленная компания долгое время сливала ртуть. Болезнь была обнаружена в 1956 году. Ее симптомы – нарушение моторики, парестезия в конечностях, ослабление зрения и слуха. В тяжелых случаях – паралич.

Кадмий

В норме кадмий в небольших количествах присутствует в здоровом человеческом организме. Однако он токсичен, и потому его избыток легко становится губительным. Кадмий обладает способностью накапливаться, хроническое отравление приводит к анемии и болезни костей. Растворимые соединения кадмия поражают центральную нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Кадмий изменяет на многие гормоны и ферменты, необходимые для нормальной работы организма. Источником кадмиевого загрязнения являются выбросы цветной и черной металлургии, ТЭЦ и угледобычи.

Читать еще:  Как убрать ржавчину кислотой

Цинк

В природе цинк существует только в составе полиметаллических руд. В древней Греции был известен сплав цинка с медью – латунь. Цинк – необходимый для нормальной жизнедеятельности элемент. Однако его переизбыток вызывает поражение почек. Есть экспериментальные данные о его токсическом воздействии на кровь и сердце.

Никель

Никель участвует в регуляции обмена ДНК и является необходимым для человека микроэлементом. Недостаток его ведет к нарушению обмена веществ и снижению иммунитета. Но избыток никеля может быть вреден для здоровья. При повышении концентрации никеля в организме могут появиться аллергические реакции в виде кожной сыпи или аллергического насморка. В Германии 15% людей имеет аллергию на никель. Данных по Росси нет. При избытке никеля также возможна анемия, повышенная возбудимость. Поскольку никель влияет на ДНК, а также РНК, при хронической интоксикации появляется риск развития новообразований в легких, на почках, на коже. Никель могут выделять в воду электрические чайники с открытым нагревательным элементом.

Хром

Ученые Национальных институтов здравоохранения США получили данные о том, что содержащийся в питьевой воде хром может вызвать рак. Были проведены лабораторные опыты над животными. Выяснилось, что, хром, который содержится в питьевой воде, может вызвать рак. Такие данные были получены в ходе лабораторных наблюдений за животными, получавшими воду с высоким содержанием хрома. У крыс появлялись злокачественные опухоли полости рта, у мышей – рак тонкой кишки. Ученые считают, что хром 6 (шестивалентный) может вызвать у людей рак легкого.

Железо

Железо – важный микроэлемент, участвующий в кроветворении и внутриклеточном обмене. Железо почти всегда встречается в природной воде, как на поверхности, так и во взятой из скважины. Больше всего железа в болотных водах. В систему водоснабжения железо попадает из-за коррозии труб. Норма содержания железа в воде – не больше 0,3 мг/л. Высокое содержание железа в воде неблагоприятно для кожи. При умывании жесткой водой на коже образуется пленка нерастворимой кальциевой соли, вызывающей раздражение. Избыток железа может изменять состав крови, вызывать аллергические реакции, железо накапливается в поджелудочной железе, почках, миокарде, иногда в щитовидной железе, мышцах и эпителии языка.

Медь

Медь и ее соединения часто обнаруживаются в природных водах. Медь необходима для высших растений, для животных и для человека, поэтому недостаток меди нежелателен, однако в питьевой воде не должно содержаться больше меди, чем 1-1,5 мг/л. Повышение концентрации меди в питьевой воде вызывает поражение слизистых оболочек почек и печени.

Молибден

Молибден входит в состав человеческого организма. Но избыток его в питьевой воде может стать причиной ослабления иммунитета, изменений функций костного мозга, тимуса и селезенки. А при наличии сопутствующего недостатка в организме кальция избыток молибдена ведет к подагре (ревматическое заболевание суставов, связанное с отложением солей, может сопровождаться опуханием и деформацией суставов).

Марганец

Марганец хорошо знаком нам всем в виде марганцовки, как называют в быту перманганат калия, обладающей антисептическими свойствами. Марганец – необходимый микроэлемент, участвует в образовании костей, в кроветворении и тканевом дыхании, в жировом и углеводном обмене, поддерживает репродуктивные функции. При недостатке марганца наблюдается рвота, изменение цвета волос, замедляется сращивание костей при переломах.

В России допустимое содержание марганца в водопроводной питьевой воде – 0,1 мг/л. Это больше, чем в Европе, но в пять раз меньше, чем в Америке. При повышении содержания марганца возможно развитие анемии, нарушение функционального состояния центральной нервной системы.

Химические свойства алюминия и основные реакции

Нахождение в природе

Алюминий впервые получен химическим путем немецким химиком Ф. Велером в 1827 г., а в 1856 г. французский химик Сен-Клер Девиль выделил его электрохимическим методом.
Алюминий является самым распространенным в природе металлом. Содержание его в земной коре составляет 7,45% (по массе). Важнейшие природные соединения алюминия — алюмосиликаты, боксит, корунд и криолит.
Алюмосиликаты составляют основную массу земной коры. Продукт их выветривания — глина и полевые шпаты (ортоклаз, альбит, анортит). Основной состав глин (каолин) соответствует формуле Аl2O3•2SiO2•2Н2O.
Боксит — горная порода, из которой получают алюминий. Состоит главным образом из гидратов оксида алюминия Аl2O3•nН2O .

Физические свойства

Физические свойства алюминия хорошо изучены. Это — серебристо-белый легкий металл, плавящийся при 660°С. Он очень пластичен, легко вытягивается в проволоку и раскатывается в листы. Из алюминия можно изготовить фольгу толщиной менее 0,01мм. Алюминий обладает очень большой тепло- и электропроводностью. Сплавы алюминия с различными металлами обладают большой прочностью и легкостью.

Химические свойства

Алюминий очень активный металл. В ряду напряжений он стоит после щелочных и щелочноземельных металлов. Однако на воздухе он довольно устойчив, так как его поверхность покрывается очень плотной пленкой оксида, предохраняющей его от дальнейшего контакта с воздухом. Если с алюминиевой проволоки снять защитную оксидную пленку, то алюминий начнет энергично взаимодействовать с кислородом и водяными парами воздуха, превращаясь в рыхлую массу гидроксида алюминия. Эта реакция сопровождается выделением тепла. Очищенный от защитной оксидной пленки алюминий взаимодействует с водой с выделением водорода:

Алюминий хорошо растворим в разбавленных серной и соляной кислотах:

Разбавленная азотная кислота на холоду пассивирует алюминий, но при нагревании алюминий растворяется в ней с выделением монооксида азота, гемиоксида азота, свободного азота или аммиака, например:

Читать еще:  Как правильно Залудить сталь

Концентрированная азотная кислота пассивирует алюминий.
Так как оксид и гидроксид алюминия обладают амфотерными свойствами, то алюминий легко растворяется в водных растворах всех щелочей, кроме гидроксида аммония:

Порошкообразный алюминий легко взаимодействует с галогенами, кислородом и всеми неметаллами. Для начала реакций необходимо нагревание. В дальнейшем реакции протекают очень интенсивно и сопровождаются выделением большого количества тепла:

Сульфид алюминия может существовать только в твердом виде. В водных растворах он подвергается полному гидролизу с образованием гидроксида алюминия и сероводорода:

Алюминий легко отнимает кислород и галогены у оксидов и солей других металлов. Реакция сопровождается выделением большого количества тепла:

Процесс восстановления металлов из их оксидов алюминием называется алюмотермией. Алюмотермией пользуются при получении некоторых редких металлов, которые образуют прочную связь с кислородом (ниобий, тантал, молибден, вольфрам и др.).
Смесь мелкого порошка алюминия и магнитного железняка называется термитом. После поджигания термита с помощью специального запала реакция протекает самопроизвольно и температура смеси повышается до 3500°С. Железо при такой температуре находится в расплавленном состоянии. Эту реакцию используют для сваривания рельсов.

Получение

Впервые алюминий был получен восстановлением хлорида алюминия металлическим натрием:

В настоящее время его получают электролизом расплавленных солей. В качестве электролита служит расплав, содержащий 85— 90% комплексной соли 3NaF • A1F3 (или Na3AlFe) — криолита и 10–15% оксида алюминия Al2O3 — глинозема. Такая смесь плавится при температуре около 1000°С. При растворении в расплавленном криолите глинозем ведет себя как соль алюминия и алюминиевой кислоты и диссоциирует на катионы алюминия и анионы кислотного остатка алюминиевой кислоты:

При пропускании электрического тока катионы алюминия и натрия движутся к катоду — графитовому корпусу ванны, покрытому на дне слоем расплавленного алюминия, получаемого в процессе электролиза. Так как алюминий менее активен, чем натрий, то он восстанавливается в первую очередь. Восстановленный алюминий в расплавленном состоянии собирается на дне ванны, откуда его периодически выводят.
Анионы AlO3 3− и A1F6 3− движутся к аноду — графитовым стержням или болванкам. На аноде в первую очередь разряжается анион AlO3 3− :

Оксид алюминия вновь диссоциирует, и процесс повторяется. Расход глинозема все время восполняется. Количество криолита практически не меняется. Незначительные потери криолита происходят вследствие образования на аноде тетрафторида углерода CF4 . Электролитическое производство алюминия требует больших затрат электроэнергии (на получение 1 т алюминия расходуется около 20 тыс. квт • ч электроэнергии), поэтому алюминиевые заводы строят вблизи электростанций.

Применение

Алюминий находит самое широкое применение. Он используется в электротехнике, его сплавы, отличаясь большой легкостью и прочностью, применяются в самолето- и машиностроении, он все больше вытесняет стали в производстве теплообменных аппаратов, из него изготовляют фольгу, применяемую в радиотехнике и для упаковки пищевых продуктов. Алюминием покрывают стальные и чугунные изделия в целях предохранения их от коррозии: изделия нагревают до 1000° С в смеси алюминиевого порошка (49%), оксида алюминия (49%) и хлорида аммония (2%). Этот процесс называется алитированием. Алитированные изделия выдерживают нагревание°С, не подвергаясь коррозии.

Оксид алюминия Al2O3

Представляет собой белое вещество, обладающее высокой температурой плавления (2050°С). В природе оксид алюминия встречается в виде корунда и глинозема. Иногда встречаются прозрачные кристаллы корунда красивой формы и окраски. Корунд, окрашенный соединениями хрома в красный цвет, называют рубином, а окрашенный соединениями титана и железа в синий цвет — сапфиром. Рубин и сапфир являются драгоценными
камнями. В настоящее время их довольно легко получают искусственно.
Оксид алюминия обладает амфотерными свойствами, но он не растворяется в воде, кислотах и щелочах. При кипячении оксида алюминия в концентрированном растворе щелочи он частично переходит в раствор. Оксид алюминия переводят в растворимое состояние сплавлением со щелочами или с пиросульфатом калия:

Полученные сплавы растворяются в воде. При сплавлении оксида алюминия с поташом или содой образуются алюминаты, которые легко растворяются в воде:

Природный корунд — очень твердое вещество. Он применяется для изготовления наждачных кругов и шлифовальных порошков. Рубин используют для изготовления втулок часовых и других точных механизмов.
Глинозем используется как сырье для получения алюминия. Обезвоженный оксид алюминия применяется как адсорбент при очистке и разделении органических веществ методом хроматографии.

Гидроксид алюминия Al (ОН)3

Представляет собой белое вещество, которое при нагревании теряет воду, превращаясь оксид алюминия. Гидроксид алюминия обладает амфотерными свойствами. Свежеосажденный гидроксид легко растворяется в кислотах и щелочах (кроме гидроксида аммония):

Гидроксид алюминия является слабым основанием и еще более слабой кислотой, поэтому соли алюминия находятся в растворе только в присутствии избытка кислоты, а алюминаты — только в присутствии избытка щелочи. При разбавлении растворов водой эти соединения сильно гидролизуют.
Высушенный гидроксид алюминия теряет часть воды, не растворяется ни в кислотах, ни в щелочах и этим напоминает оксид алюминия.
Гидроксид алюминия обладает свойством поглощать различные вещества, поэтому его применяют при очистке воды.

Химия, Биология, подготовка к ГИА и ЕГЭ

Вопросы части С объединяют знание всех тем химии. В случае Задания С2 ЕГЭ по химии — знание всех классов неорганических веществ и их качественных реакции.

Дается конкретный химический эксперимент, ход которого нужно описать химическими реакциями.

Для таких реакции обычно предлагаются какие-то внешние проявления — выделения газа, выпадение осадка или изменение окраски раствора.

Читать еще:  Пoчemy дeвyшkam нeльзя нocить жemчyг?

Таблица качественных реакций для газов

2) взаимодействие металлов с азотной кислотой (концентрированной)

3) разложение нитратов

Взаимодействие активных металлов с концентрированной серной кислотой:
4Mg + 5H2SO4 = 4MgSO4 + H2S + 4H2O

Газ с резким запахом. Растворимый в воде

2) обменные реакции солей аммония

1) горение азотсодержащих веществ;
2) разложение нитрита аммония:

Газы, поддерживающие горение:
(иногда, для озона — запах свежести);

(для NO2 – бурый цвет)

С + 2NO2 = CO2 + 2NO

Описание Формула
Запах тухлых яиц 1) взаимодействие серасодежащих веществ с кислородом

2) взаимодействие некоторых металлов с концентрированной серной кислотой

Газ с резким характерным запахом, растворимый в воде
Газ, не поддерживающий горение, малорастворимый в воде, не ядовитый

Таблица качественных реакций для щелочных металлов:

Т.к. все соединения щелочных металлов хорошо растворимы в воде, то их определяют по цвету пламени:

(указан так же цвет пламени некоторых щелочно-земельных металлов)

Таблица качественных реакций

— цвета осадков

Осадки белого цвета

нерастворимый в воде;

нерастворимый в HNO3

качественная реакция на соли серебра;

качественная реакция на хлорид-ионы;

нерастворимый в кислотах

качественная реакция на соли бария;

качественная реакция на сульфат-ионы;

образуется при пропускании газа без цвета с резким запахом через известковую воду;

растворяется при пропускании избытка газа;

растворяется в кислотах

растворение в кислотах:
CaSO3 + 2H + → SO2↑ + H2O + Ca 2+

образуется при добавлении щелочи;

растворяется в избытке щелочи

избыток щелочи : Al(OH)3 + NaOH =Na[Al(OH)]4;

  • избыток щелочи: Zn(OH)2 +2NaOH =Na2[Zn(OH)]4;
  • образуется при пропускании газа без цвета и запаха через известковую воду;

    растворяется при пропускании избытка газа;

    растворяется в кислотах

    растворение в кислотах:

    Осадок светло-желтого цвета

    (осадок кремового цвета)

    образуется при приливании AgNO3;

    нерастворим в HNO3;

    качественная реакция на бромид-ионы;

    (качественная реакция на соли серебра);

    Осадок желтого цвета

    образуется при приливании AgNO3;

    нерастворим в HNO3;

    качественная реакция на иодид-ионы;

    (качественная реакция на соли серебра);

    Осадок желтого цвета

    образуется при приливании AgNO3;

    растворим в кислотах;

    Осадки коричневых цветов

    Осадок бурого цвета

    образуется при взаимодействии с растворами щелочей;

    качественная реакция на соли железа

    Осадки синих и зеленых цветов

    Осадки зеленого цвета

    Осадок голубого цвета

    (осадок синего цвета)

    образуется при взаимодействии с растворами щелочей

    качественная реакция на соли меди ( II)

    Осадок синего цвета

    образуется при взаимодействии с раствором красной кровяной и желтой кровяной соли

    качественная реакция на соли железа ( II) — с красной кровяной солью;

    качественная реакция на соли железа ( III) — с желтой кровяной солью;

    Осадки черного цвета

    Осадок черного цвета

    Образуется при взаимодействии с сульфидами или с H2S

    качественная реакция на сульфид-ионы

    Еще на эту тему:

    Обсуждение: “Таблицы качественных реакций”

    а какого цвета осадок тетрагидроксоалюмината натрия?

    а это не осадок, это растворимое вещество

    Любой осадок возможно растворим другим веществом. В данной среде вещество ведет себя пассивно от того и осаждается.

    порода, до этого промытая кислотами, была залита мною аптечным йодом и прокипела в нём целую ночь. После остывания была добавлена вода, раствор отстоялся и был декантирован. Раствор представляет собой очень тёмный, чёрно-коричневый золь. В луче фонаря видна мельчайшая, не оседающая, не фильтрующаяся пыль. При добавлении в золь соляной к-ты выпадает красно-коричневый осадок, а раствор светлеет до тёмно красного. В растворе появляется свободный йод обнаруживаемый крахмалом, до прибавления солянки йод не обнаруживался. Так вот, выпавший осадок не растворяется ни в кислотах, ни в щелочах, не реагирует с хлором, растворить его больше ни в чём не получается, на частицы породы уже не похож. Напоминает по цвету осадок смеси гидроксидов железа II и III, однако нерастворим в кислотах. Что это может быть, хотя бы класс соединения узнать? Подскажите пожалуйста.

    напишите хотя бы примерно что за порода…

    Это глинистая порода светло коричневого цвета. После травления указанной породы смесью соляной к-ты с гипохлоритом натрия был получен жёлтый раствор. Раствор был нейтрализован и осаждён гидрокарбонатом натрия, осадок отправлен на спектральный анализ, вот результат в массовых долях:
    13Al 5.420±0.061
    14Si 1.136±0.023
    15P 0.597±0.019
    16S 0.279±0.010
    17Cl 77.974±0.066
    20Ca 5.778±0.014
    22Ti 0.157±0.017
    26Fe 8.506±0.026
    29Cu 0.152±0.002
    Да, результат более чем странный, но ведь лаборатория анализ делала! В общем, эта же порода (поскольку растворилась лишь незначительная, незаметная на глаз её часть) была промыта водой и обработана указанным выше способом. Больше ничего не знаю))) Подскажите хотя бы возможные варианты полученного осадка.

    После обработки смесью гипохлорита и соляной все указанные элементы должны были перейти в раствор. После реакции с гидрокарбонатом могло получиться:
    Al(OH)3, CaCO3, Ca(OH)2, Ti(OH)2, возможно, Ti(OH)CO3, Fe(OH)2, Fe(OH)3, Cu(OH)2, возможно очень небольшие кол-ва карбонатов, хотя, после промывания водой они должны были раствориться

    Дело в том, что полученный раствор после травления солянкой с гипохлоритом был декантирован с породы и только тогда обработан гидрокарбонатом, там действительно могли образоваться указанные вами осадки хоть это и противоречит результатам лаб. анализа. Но не в этом дело. Состав этого раствора я привёл лишь для понимания какие элементы могут там содержаться. Сама порода была промыта водой и затем обработана аптечным йодом, как я писал ранее в первом посте, вот осадок полученный после йода меня интересует.

    Указанные осадки как раз по составу соответствуют анализу, ну да ладно. Смотрите по таблице растворимости, что дает с йодом осадок

    Ссылка на основную публикацию
    Adblock
    detector