- Какая теплопроводность алюминия
- Теплопроводность стали, алюминия, латуни, меди
- Что такое теплопроводность
- Показатели для стали
- Влияние концентрации углерода
- Значение в быту и производстве
- Теплопроводность алюминиевых сплавов
- Сведения о показателе теплопроводности
- Теплопроводность алюминиевых сплавов
- Таблица по теплопроводности:
- Теплопроводность сплавов алюминия
- Характеристика теплопроводности материалов
- Физические свойства алюминия
- Технические характеристики некоторых сплавов на основе алюминия
- Теплопроводность металлов
- Что такое теплопроводность и для чего нужна
- Понятие термического сопротивления и коэффициента теплопроводности
- От чего зависит показатель теплопроводности
- Методы измерения
- Теплопроводность стали, меди, алюминия, никеля и их сплавов
- Применение
- Какая теплопроводность алюминия
Какая теплопроводность алюминия
Теплопроводность стали, алюминия, латуни, меди
Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.
Что такое теплопроводность
Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:
- Молекул.
- Атомов.
- Электронов и других частиц структуры металла.
Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.
Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.
Показатели для стали
Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.
Существуют и другие особенности теплопроводности:
Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
- У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
- Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.
Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.
Влияние концентрации углерода
Концентрация углерода в стали влияет на величину теплопередачи:
Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
- Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
- У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.
Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.
Значение в быту и производстве
Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:
При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
- При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
- При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.
Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.
Теплопроводность алюминиевых сплавов
Теплопроводностью называется свойство передавать энергию от нагреваемого участка материала к более холодному участку. Показатель учитывается при расчетах в изготовлении различных сплавов.
Сведения о показателе теплопроводности
Процесс передачи тепла в теле любого вещества происходит между атомными и молекулярными связями материала, в которых температурный режим неравномерный.
Любое вещество нагревается постепенно, передавая энергию тепла от участка к участку. Это теплоотдача зависит от состояния вещества.
Проводимость тепла зависит от:
1. Агрегатного состояния вещества,
2. Скорости нагрева.
3. Показателя плотности.
4. Температуры плавления.
Коэффициентом проводимости тепла называется — количество теплоты, проходящей через единицу площади материала за определённый промежуток времени при изменении температур.
От чего зависит проводимость тепла
Алюминий имеет структуру кристалла — куб.
При температуре 200С удельный вес = 2,7 г/см3.
Температурный показатель плавления равен от +657 до +660,2 0С.
Если алюминий повышенной чистоты, то металл начинает плавиться при +1800 до 2060 0С. Удельная теплоемкость в период нагревания повышается, так же повышается коэффициенты расширения и теплопроводности
Теплопроводность алюминия, по сравнению с другими металлами считается высокой.
Алюминий вступая в реакцию с кислородом, образовывает оксидную плёнку на поверхности. Последняя предохраняет металл от дальнейшего окисления.
Алюминиевые сплавы обладают уникальными свойствами:
1. При плавлении алюминия, находящийся в ней водород растворяется, что приводит к образованию пор в металле. При наличии в составе примесей кальция, калия или натрия, так же приводит к пористости.
2. Структура материала становиться однородной при остывании, если в сплаве присутствуют добавки железа, ванадия, никеля или циркония.
3. К некоторым химическим элементам алюминий сплавы остаются инертны. Наличия таких веществ, как сера и её производные выпадают в осадок, образовывая шлак, на изменении структуры и на свойства сплавов не влияют.
4. Под воздействием азота, фосфора или углерода свойства материала не изменяются.
Прочность алюминия в чистом виде невысокая, поэтому для производства готовых изделий, технология литья используется крайне редко. Как правило это разливного вида чушки, изготавливаемы е для дальнейшего проката и ковки.
Теплопроводность алюминиевых сплавов
Продукция из алюминиевых сплавов делится по видам технологического цикла:
1. Литейные. Выполнять литых изделий.
2. Деформируемые. Под давлением придается форма (прессовка, ковка, штамповка).
Алюминиевые изделия, используемые в строительстве, изготавливается из сплава повышенной прочности.
Перечень нормативных показателей, с учетом которых характеризуются сплавы:
1. Теплопроводность.
2. Переход от одного агрегатного состояния к другому.
3. Наличие легирующих присадок, влияющих на качество продукции и показатель долговечности (прочности).
Сведения о теплопроводности указаны в справочной литературе, но основными критериями оценки будут:
1. Плотность.
2. Теплопроводность.
3. Линейное расширение (коэффициент).
4. Температура, при которой изменяется прочность.
5. Устойчивость к коррозии.
6. Удельное электросопротивление.
После проведения анализа, несложно установить коэффициент зависимости теплопроводности от температуры металла.
Какие алюминиевые сплавы обладают большей теплопроводностью
Если алюминиевые изделия в состав которого включается медью, цинк, магний или кремний, то процент теплопроводности в них заметно увеличивается, по отношению к алюминию в чистом виде.
Таблица по теплопроводности:
Проводимость тепла увеличивается с ростом температуры. Сплав АД1 отличается большей теплопроводностью. Используется для производства профилей, штамповок, слитков и другой аналогичной продукции.
Наивысшая теплопроводность алюминиевых сплавов в обычных условиях отмечается у алюминиевого сплава АД1 — теплопроводность при 20 0С — равняется 210 Вт/(м•град).
Самая низкая теплопроводность алюминиевых сплавов зафиксирована у литейных сплавов АК4, АЛ1, АЛ8.
Теплопроводность сплавов алюминия
Теплопроводность алюминия — это технический параметр, характеризующий свойства металла и сплавы на его основе. Значение этого показателя учитывается при формировании составов для изготовления литейных, деформируемых изделий, промышленного производства деталей и установок.
Характеристика теплопроводности материалов
Понятие теплопроводности материалов характеризуется способностью переносить тепловую энергию в пределах определенного объекта от нагретых частей к холодным. Процесс осуществляется атомами, молекулами, электронами и происходит в любых телах с неравномерным распределением температуры.
С позиций кинетической физики этот процесс происходит в результате взаимодействия частиц молекул более нагретых участков в пределах образца с другими элементами, отличающимися низшей температурой. Механизм и скорость переноса теплоты зависит от агрегатного состояния вещества.
Категория теплопроводности предусматривает определение скорости нагревания образца материала и перемещение температурной волны в определенном направлении. Показатель зависит от физических параметров:
- плотности;
- температуры фазового перехода в жидкое состояние
- скорости распространения звука (для диэлектриков).
Коэффициент теплопроводности равен количеству теплоты, которая проходит через единицу площади однородного материала за единицу времени при разнице температуры.
Физические свойства алюминия
Химический элемент алюминий имеет кубическую кристаллическую структуру. Его удельный вес при 20 °C составляет 2,7 г/см³, температура плавления – +657…+660,2 °C, скрытая теплота плавления – 94,6 °C.
Алюминий высокой чистоты кипит при +1800…+2060 °C. При нагревании увеличивается показатель удельной теплоемкости металла, проводимость тепла и коэффициент линейного расширения.
Электропроводность алюминия возрастает с понижением температуры: при 189 °C составляет 156 ед., а при 400 °C – 12,5.
Среди химических элементов алюминий отличается высокой активностью. Он легко реагирует с кислородом, образуя плотную окисную пленку, предохраняющую металл от дальнейшего влияния среды.
По мере повышения температуры в металле растворяется водород, повышающий пористость материала. Примеси щелочных химических элементов (калия, натрия, кальция), кремния, магния способствуют резкому увеличению пористости алюминия.
Добавки меди, ниобия, никеля, марганца, железа, хрома, ванадия, циркония создают однородную структуру при остывании расплавленного материала. Влияние лигатурных добавок других компонентов на физические свойства металла и его сплавы учитывается в технологии литья изделий.
Наличие дополнительных материалов изменяет показатель проводимости тепла состава и температуру плавления. Например, при обычных условиях формирования алюминиевых сплавов сера и ее соединения уходят в шлак, не оказывая вредного влияния на свойства состава.
Такое же воздействие имеют фосфор, углерод, азот. Они не изменяют механические свойства сплава. Для производства литейных изделий из-за пониженной прочности чистый алюминий применяется редко.
Коррозионная стойкость металла тем выше, чем ниже в нем содержание примесей железа и кремния. Но их наличие несколько повышает прочность материала, снижая при этом пластичность и электропроводность.
Технические характеристики некоторых сплавов на основе алюминия
По технологическим особенностям сплавы подразделяются на основные группы:
- литейные — обладают повышенными литейными технологическими свойствами;
- деформируемые — легко поддаются обработке под давлением.
Например, создание алюминиевой конструкции, используемой в строительстве, требует особого вида сплава с повышенной прочностью, выдерживающего давление и нагрузку.
В зависимости от назначения составов на основе алюминия при их формировании руководствуются нормами и правилами, учитывающими:
- проводимость тепла материалом;
- точку перехода из расплава в твердое состояние;
- наличие лигатурных компонентов, влияющих на технические параметры состава и повышающих прочность.
Соотношение основного компонента к добавкам влияет на показатель проводимости тепла сплава, учитывающегося при изготовлении радиаторов и других видов изделий, предназначенных для монтажа тепловых коммуникаций.
Сводные данные о проводимости тепла алюминиевых сплавов собраны в специальных справочниках. В них приводятся значения распространенных сплавов металла с кремнием, магнием, медью, цинком, дюралюминия. Имеются характеристики литейных сплавов при различных температурах с указанием теплофизических свойств состава. Основными считаются показатели:
- плотности;
- коэффициента теплопроводности;
- коэффициента линейного теплового расширения;
- температуры изменения прочности;
- коррозионной устойчивости на воздухе;
- удельного электрического сопротивления.
Анализ данных свидетельствует о зависимости коэффициента теплопроводности от роста температуры и состава материала. Низкая теплопроводность свойственна в основном литейным составам на основе алюминия с маркировками АК4, АЛ1, АЛ8.
Наиболее высокой плотностью обладают составы основного компонента с кремнием, цинком. Из легких материалов наиболее плотным является состав, содержащий магний. Содержание меди в материале повышает его прочность и устойчивость к коррозии.
Чем выше содержание в составе на основе алюминия, тем больше его теплопроводность, которая увеличивается при нагревании материала. Наличие лития в составе сплава приводит к уменьшению значения коэффициента теплопроводности.
Удельная теплоемкость сплава с содержанием магния и кремния увеличивается при нагревании. Среди алюминиевых сплавов системы Al-Cu-Mn наиболее теплопроводным является деформируемый состав Д20.
Он содержит в незначительных количествах (0,05–7%) примеси железа, кремния, марганца, титана, циркония, магния, цинка и 91–93,5% алюминия и предназначен для изготовления сварных изделий, работающих при комнатных или кратковременно повышенных температурах.
Теплопроводность металлов
Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.
Что такое теплопроводность и для чего нужна
Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.
Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Коэффициент теплопроводности металлов при температура, °С
От чего зависит показатель теплопроводности
Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:
- вида металла;
- химического состава;
- пористости;
- размеров.
Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.
Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.
Методы измерения
Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.
Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.
Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:
- кухонная посуда с различными свойствами;
- оборудование для пайки труб;
- утюги;
- подшипники качения и скольжения;
- сантехническое оборудование для подогрева воды;
- приборы отопления.
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
Какая теплопроводность алюминия
Содержание:
Марки алюминия.
Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его малая плотность (примерно 2.70 г/куб.см). Температура плавления алюминия около 660 С.
Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла. Основными естественными примесями в алюминии являются железо и кремний. Железо, например, присутствуя в виде самостоятельной фазы Fe-Al , снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.
В зависимости от степени очистки первичный алюминий разделяют на алюминий высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97). Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах
1) Металловедение алюминия и его сплавов. Под ред. И.Н.Фридляндер. М. 1971. 2) Механические и технологические свойства металлов. А.В.Бобылев. М. 1980.
Ниже в таблице приведена сокращенная информация о большей части марок алюминия. Также указано содержание его основных естественных примесей – кремния и железа.
Марка | Al , % | Si, % | Fe, % | Применения | |||||||||||
Алюминий высокой чистоты | |||||||||||||||
А995 | 99.995 | ||||||||||||||
А98 | 99.98 | ||||||||||||||
А95 | 99.95 | ||||||||||||||
Алюминий технической чистоты | |||||||||||||||
А8 АД000 | 99.8 | ||||||||||||||
А7 АД00 | 99.7 | ||||||||||||||
А6 | 99.6 | ||||||||||||||
А5Е | 99.5 | ||||||||||||||
А5 АД0 | 99.5 | ||||||||||||||
АД1 | 99.3 | ||||||||||||||
А0 АД | 99.0 |
Марка | Содержание Al | Содержание Fe | Скорость коррозии |
А7 | 99.7 % | 0.16 % | 0.25 – 1.1 |
А6 | 99.6% | 1.2 – 1.6 | |
А0 | 99.0% | 27 — 31 |
Наличие железа уменьшает стойкость алюминия также к щелочам, но не сказывается на стойкости к серной и азотной кислоте. В целом коррозионная стойкость технического алюминия в зависимости от чистоты ухудшается в таком порядке: А8 и АД000, А7 и АД00, А6, А5 и АД0, АД1, А0 и АД.
При температуре свыше 100С алюминий взаимодействует с хлором. С водородом алюминий не взаимодействует, но хорошо его растворяет, поэтому он является основной составляющей газов, присутствующих в алюминии. Вредное влияние на алюминий оказывает водяной пар, диссоциирующий при 500 С, при более низких температурах действие пара незначительно.
Алюминий устойчив в следующих средах:
— естественная пресная вода до температур 180 С. Скорость коррозии возрастает при аэрации,
примесях едкого натра, соляной кислоты и соды.
— концентрированная азотная кислота
— кислые соли натрия, магния, аммония, гипосульфит.
— слабые (до 10%) растворы серной кислоты,
— 100% серная кислота
— слабые растворы фосфорной (до 1%), хромовой (до 10%)
— борная кислота в любых концентрациях
— уксусная, лимонная, винная. яблочная кислота, кислые фруктовые соки, вино
Алюминий неустойчив в таких средах:
— разбавленная азотная кислота
— разбавленная серная кислота
— плавиковая и бромистоводородная кислота
— щавелевая, муравьиная кислота
— растворы едких щелочей
— вода, содержащая соли ртути, меди, ионов хлора, разрушающих окисную пленку.
В контакте с большинством технических металлов и сплавов алюминий служит анодом и его коррозия будет увеличиваться.
Механические свойства
Модуль упругости E = 7000-7100 кгс/мм 2 для технического алюминия при 20 С. При повышении чистоты алюминия его величина уменьшается (6700 для А99).
Модуль сдвига G = 2700 кгс/мм 2 .
Основные параметры механических свойств технического алюминия приведены ниже: