Какие металлы пластичные
Elton-zoloto.ru

Драгоценные металлы

Какие металлы пластичные

Пластичность, в чем она состоит, свойства, примеры, эксперименты

тягучесть это технологическое свойство материалов, позволяющее им деформироваться до растяжения; то есть разделение его двух концов без раннего перелома где-то посередине удлиненного участка. По мере удлинения материала его поперечное сечение уменьшается, становясь более тонким.

Поэтому пластичные материалы механически обрабатывают, чтобы придать им нитевидные формы (провода, кабели, иглы и т. Д.). На швейных машинах катушки с витыми нитями представляют собой домашний пример пластичных материалов; в противном случае текстильные волокна никогда бы не приобрели характерных форм.

Какова цель пластичности в материалах? Способность преодолевать большие расстояния или привлекательные дизайны, будь то для разработки инструментов, украшений, игрушек; или для транспортировки некоторой жидкости, такой как электрический ток.

Последнее приложение представляет собой ключевой пример пластичности материалов, особенно металлов. Тонкие медные провода (верхнее изображение) являются хорошими проводниками электричества, и наряду с золотом и платиной доступны во многих электронных устройствах для обеспечения их работы..

Некоторые волокна настолько тонкие (толщиной всего в несколько микрометров), что поэтическая фраза «золотые волосы» приобретает все истинное значение. То же самое касается меди и серебра.

Пластичность не была бы возможным свойством, если бы не было молекулярной или атомной перегруппировки для противодействия падающей растягивающей силе. И если бы его не существовало, человек никогда бы не узнал о кабелях, антеннах, мостах, которые исчезли бы, и мир остался бы в темноте без электрического света (помимо других неисчислимых последствий).

  • 1 Что такое пластичность??
  • 2 свойства
  • 3 Примеры пластичных металлов
    • 3.1 Размер зерен и кристаллические структуры металлов
    • 3.2 Влияние температуры на пластичность металлов
  • 4 Эксперимент по объяснению пластичности у детей и подростков
    • 4.1 Жевательная резинка и пластилин
    • 4.2 Демонстрация с металлами
  • 5 ссылок

Что такое пластичность?

В отличие от пластичности пластичность заслуживает более эффективной структурной перестройки.

Почему? Потому что, когда поверхность, где натяжение больше, твердое тело имеет больше средств для скольжения своих молекул или атомов, образуя листы или пластины; в то время как когда напряжение сосредоточено во все меньшем поперечном сечении, молекулярное скольжение должно быть более эффективным для противодействия этой силе..

Не все твердые вещества или материалы могут это сделать, и по этой причине они разрушаются при испытаниях на растяжение. Полученные разрывы в среднем горизонтальны, в то время как из пластичных материалов конические или заостренные, признак растяжения.

Пластичные материалы также могут прорваться через точку напряжения. Это может быть увеличено, если температура повышается, так как тепло способствует и облегчает молекулярные слайды (хотя есть несколько исключений). Именно благодаря этим оползням материал может проявлять пластичность и, следовательно, быть пластичным.

Однако пластичность материала включает в себя другие переменные, такие как влажность, тепло, примеси и способ применения силы. Например, свежеплавленное стекло является пластичным, принимая нитевидные формы; но при охлаждении становится хрупким и может сломаться при любом механическом воздействии.

свойства

Пластичные материалы имеют свои собственные свойства, непосредственно связанные с их молекулярным расположением. В этом смысле жесткий металлический стержень и мокрый глиняный стержень могут быть пластичными, даже если их свойства сильно отличаются.

Тем не менее, все они имеют что-то общее: пластичное поведение до распада. В чем разница между пластиком и упругим предметом?

Эластичный объект обратимо деформируется, что происходит первоначально с пластичными материалами; но сила растяжения увеличивается, деформация становится необратимой, и объект становится пластичным.

С этого момента проволока или нить принимают определенную форму. После непрерывного растяжения его поперечное сечение становится настолько малым, а растягивающее напряжение слишком высоким, так что его молекулярные скольжения больше не могут противодействовать растяжению и в конечном итоге разрушаются..

Если пластичность материала чрезвычайно высока, как в случае с золотом, с помощью одного грамма можно получить провода длиной до 66 км, толщиной 1 мкм..

Чем длиннее проволока, полученная из массы, тем меньше ее поперечное сечение (если у вас нет тонны золота, чтобы построить проволоку значительной толщины)..

Примеры пластичных металлов

Металлы относятся к пластичным материалам с неисчислимым количеством применений. Триада состоит из металлов: золота, меди и платины. Один золотой, другой розовато-оранжевый, а последний серебряный. В дополнение к этим металлам есть и другие с более низкой пластичностью:

-Латунь (и другие металлические сплавы)

-Сталь (хотя на ее пластичность может повлиять, в зависимости от ее углеродного состава и других добавок)

-Свинец (но в определенных небольших температурных диапазонах)

Без предварительных экспериментальных знаний трудно определить, какие металлы действительно пластичны. Его пластичность зависит от степени чистоты и от того, как добавки взаимодействуют с металлическим стеклом.

Другие переменные, такие как размер кристаллических зерен и расположение кристалла, также рассматриваются. Кроме того, количество электронов и молекулярных орбиталей, участвующих в связи металла, то есть в «море электронов», также играет важную роль.

Взаимодействия между всеми этими микроскопическими и электронными переменными делают пластичность концепцией, которую необходимо глубоко проанализировать с помощью многомерного анализа; и вы найдете отсутствие стандартного правила для всех металлов.

Именно по этой причине два металла, хотя и с очень похожими характеристиками, могут быть или не быть пластичными.

Размер зерен и кристаллические структуры металлов

Зерна представляют собой кристаллические участки, которые не имеют заметных неровностей (зазоров) в своих трехмерных решетках. В идеале они должны быть полностью симметричными, а их структура должна быть четко определена..

Каждое зерно для одного и того же металла имеет одинаковую кристаллическую структуру; то есть металл с компактной гексагональной структурой, ГПУ, имеет зерна с кристаллами с системой ГПУ. Они расположены таким образом, что перед силой тяги или растяжения они скользят друг над другом, как если бы они были плоскостями, состоящими из мрамора..

Обычно, когда плоскости, состоящие из мелких зерен, скользят, они должны преодолевать большую силу трения; в то время как если они большие, они могут двигаться более свободно. Фактически, некоторые исследователи стремятся изменить пластичность некоторых сплавов посредством контролируемого роста их кристаллических зерен..

С другой стороны, что касается кристаллической структуры, то обычно металлы с кристаллической системой ГЦК (гранец по центру, или кубические по центру лица) являются наиболее пластичными. Между тем, металлы с ОЦК кристаллической структурой (кубическое тело, кубические с центром на гранях) или ГПУ, как правило, менее пластичны.

Например, и медь, и железо кристаллизуются с помощью ГЦК-компоновки и являются более пластичными, чем цинк и кобальт, оба с ГЦП-компоновками.

Влияние температуры на пластичность металлов

Высокая температура может уменьшить или увеличить пластичность материалов, и исключения также относятся к металлам. Однако, как правило, при размягчении металлов, тем больше возможностей превратить их в нити, не разрывая их..

Это связано с тем, что повышение температуры вызывает колебание металлических атомов, что приводит к объединению зерен; то есть несколько мелких зерен соединяются, образуя крупное зерно.

С более крупными зернами пластичность увеличивается, и молекулярные слайды сталкиваются с меньшим количеством физических препятствий.

Эксперимент по объяснению пластичности у детей и подростков

Пластичность становится чрезвычайно сложной концепцией, если начать анализировать под микроскопом. Итак, как вы объясните это детям и подросткам? Таким образом, что это кажется настолько простым, насколько это возможно, на ваших любопытных глазах.

Жевательная резинка и пластилин

До сих пор мы говорили о металлах и расплавленном стекле, но есть и другие невероятно пластичные материалы: жевательная резинка и пластилин..

Чтобы продемонстрировать пластичность жевательной резинки, достаточно схватить две массы и начать их растягивать; один слева, а другой справа. Результатом будет мост подвески жевательной резинки, который не сможет вернуться к своей первоначальной форме, если не будет разминать руками.

Тем не менее, наступит момент, когда мост в конечном итоге сломается (и пол будет испачкан жвачкой).

На изображении выше показано, как ребенок, нажимающий на контейнер с отверстиями, заставляет пластилин появляться, как если бы это были волосы. Сухое игровое тесто менее пластично, чем маслянистое; следовательно, эксперимент может состоять просто в создании двух дождевых червей: один с сухим пластилином, а другой увлажненный маслом.

Ребенок заметит, что маслянистый червь легче вылепить и набрать длину за счет своей толщины; Пока червь высыхает, он может несколько раз сломаться.

Пластилин также представляет собой идеальный материал, чтобы объяснить разницу между податливостью (лодка, ворота) и пластичностью (волосы, дождевые черви, змеи, саламандры и т. Д.).

Демонстрация с металлами

Хотя подростки не будут манипулировать чем-либо, возможность стать свидетелем образования медных проводов в первом ряду может стать для них привлекательным и интересным опытом. Демонстрация пластичности будет еще более полной, если мы перейдем к другим металлам и, таким образом, сможем сравнить их пластичность..

Далее все провода должны подвергаться постоянному растяжению до их точки разрыва. При этом подросток будет визуально подтверждать, как пластичность влияет на сопротивление проволоки разрыву..

Самый пластичный металл – золото

Золото – это самый популярный металл в истории, в культуре, в экономике. За обладание им проливались реки крови, вспыхивали семейные раздоры и даже велись войны. Его значение для всей человеческой цивилизации основано на его уникальных химических и физических свойствах, на особенностях внутреннего строения.

Самый “металлический” металл

В золоте сконцентрированы все самые явные свойства, которые ученые называют металлическими. По электропроводимости оно уступает только серебру, меди и чистому палладию. По теплопроводности – тому же серебру, меди и кобальту. По способности поглощать тепловую энергию золото уступает только экзотическому висмуту, опережая ртуть и серебро. По другим «металлическим» свойствам – ковкости и отражению света – оно является чемпионом. Золото – это самый пластичный металл в мире, а блеск его – понятие легендарное.

Молекулярное строение золота тоже очень «металлическое». Оно представляет собой геометрически правильную кристаллическую решетку с положительными ионами в узлах и плотное по концентрации облако «электронного» газа между ними. Эту часть атома составляют свободные электроны, расположенные на внешнем энергетическом уровне. Они создают силу притяжения между узлами решетки, что и обеспечивает способность металла деформироваться без нарушения общей целостности. Так устроен самый пластичный металл.

Читать еще:  Как подсоединить провода к сварке

Определение пластичности

От греческого Πλαστική (“ваяние”, “лепка”) произошло слово «пластика», давшее корень другим, связанным с изменением формы твердого тела. Пластичность – свойство твердого тела менять форму и размеры и сохранять остаточную деформацию после прекращения действия внешних сил без изменения объема и нарушения целостности.

Для металлов это одна из важнейших характеристик, позволяющая использовать их в практике. Без возможности придавать заготовкам из металла нужную форму было бы невозможно создание даже простейших бытовых предметов. Золото – самый пластичный металл, и изделия из него – пример того, какую форму можно придать достаточно податливому материалу ковкой, давлением, прокаткой, вытяжкой, волочением и т. д. Обратным по смыслу свойством материала является хрупкость.

Испытание на пластичность

Характеристики пластичности металлов обычно определяются при статичных испытаниях. Самым показательным является испытание на растяжение. Чтобы выяснить, какой металл самый пластичный, необходимо подвергнуть такому воздействию образцы одинакового размера при сходных температурных условиях. Величина деформации, которую способен выдержать образец металла перед разрушением, – объективный показатель пластичности.

Числовым выражением результата испытаний на растяжение являются два основных коэффициента. Относительное удлинение – процентное отношение увеличенной длины образца после разрыва, вызванного деформацией, к первоначальной. Самый пластичный металл – золото – имеет показатель – 65%. Для сравнения: у железа – 40-50, у алюминия – 30-40.

Второй показатель пластичности – относительное сужение поперечного сечения образца. У золота первоначальное сечение образца на 90% больше того, какое он имеет перед разрывом. У алюминия эта цифра – 80%, у меди – 75%.

Мягкое, вязкое и прочное

По шкале твердости Мооса у золота показатель – 2,5–3,7. В чистом виде этот металл значительно мягче многих широко распространенных материалов и царапается ножом или даже ногтем. Поэтому, чтобы избежать быстрого износа золотых изделий, в металл для их изготовления добавляют специальные упрочняющие лигатурные элементы, обычно серебро или медь. Существуют у золота и вредные примеси. Самый пластичный металл в таблице Менделеева в присутствии свинца, платины, кадмия или серы становится хрупким.

Мягкость золота особого характера, она дополняется его вязкостью и тягучестью. Удобство формовки и технологической обработки деталей дополняется высокими показателями прочности на растяжение – 3300 кг/см 2 . Такое уникальное сочетание физико-механических характеристик золота используется с давних времен. Пример – сусальное золото.

Купола в России кроют чистым золотом…

Несмотря на многовековую историю золотодобычи, этот металл всегда относился к редким и драгоценным. Это самый пластичный металл. Это качество делает применение золотой фольги для декоративной отделки элементов интерьера или даже для покрытия церковных куполов рентабельным. Для покрытия большой площади требуется очень немного драгоценного металла: 1 грамм пластинки может быть раскован в лист площадью 1 м 2 .

Даже ручной способ получения листов для золочения дает возможность добиться толщины в тысячную долю миллиметра. Такая толщина позволяет золотым пластинкам держаться на поверхности за счет молекулярного притяжения. Технология получения сусали значительно усовершенствовалась. Теперь для расплющивания золотых листов применяются роботизированные линии, но в основе процесса – высокая пластичность исходного материала.

Золотая нить

Способность золота выдерживать растягивающее усилие без разрыва известно с самого начала его коммерческого использования. Изготовление такой проволоки для ювелирных изделий было налажено еще в античные времена – древние мастера уже знали, какой металл самый пластичный. В середине XX века производили микропровод с золотым сердечником, который даже с пластиковой изоляцией был в 7 раз тоньше человеческого волоса. Из 1 грамма металла вытягивали непрерывную золотую нить длиной около 3,5 км.

Сегодняшние технологии довели толщину золотой проволоки до нескольких микрон, дальнейшее освоение технологических достоинств металла продолжается.

Дизайн интерьера и архитектура

Дизайн интерьера, ремонт и отделка своими руками.

Свойства металлов

Для успешного создания декоративных изделий необходимо знать основные свойства исходного материала, а также технологию работы с ним.

В наши дни для изготовления посуды, украшений и различных предметов дизайна интерьера могут использоваться как металлы в чистом виде, так и их сплавы.

Художественное изделие — ваза из серебра

Все металлы и сплавы, созданные на их основе, делятся на две большие группы, обладающие различными свойствами:

  • Черные металлы — сталь
  • Цветные металлы — медь, бронза, латунь, цинк, олово, алюминий, свинец и серебро.

Именно эти виды металлов наиболее часто используются для изготовления декоративных предметов, посуды и многого другого. Поэтому давайте рассмотрим их свойства и особенности обработки металлов.

Сталь

Сталь относится к черным металлам. Для художественной обработки лучше всего подходит углеродистая сталь, которая представляет собой сплав железа с углеродом и другими элементами. Сталь обладает высокими качественными характеристиками, среди которых можно назвать следующие:

  • Упругость
  • Прочность
  • Способность к закаливанию — кусок стали нагревается при высокой температуре докрасна, а затем опускают в воду. Благодаря этому металл приобретает различные степени твердости и упругости.
  • Возможность » отпускания» посредством нагревания до красного каления и последующего медленного охлаждения.
  • Способность к обработке кузнечным молотом в нагретом состоянии, так как сталь отлично куется.
  • Возможность к разрезанию металла на тонкие полосы.

Мягкость стали прямо пропорциональная количеству углерода в ее составе. Чем меньше в металле углерода, тем он мягче и легче в обработке. Мягкость стали повышается при отжиге, то есть » отпускании» металла. Для этого сталь нагревают докрасна, а затем подвергают процедуре медленного охлаждения.

Сталь для изготовления различных изделий и художественной обработки производят в виде сортового материала. Для гравирования и чеканки чаще всего используют стали У8 и У10, где буквой » У» обозначено количество углерода в составе сплава.

Лезвие ножей изготовлено из нержавеющей углеродистой стали

Цветные металлы

Цветные металлы стоят намного дороже черных, потому что они обладают множеством уникальных свойств. Главным из них является отсутствие реакции с магнитом, то есть цветные металлы не притягиваются и не намагничиваются. Кроме этого, большинство из них практически не поддаются окислению, поэтому изделия характеризуются длительностью срока службы.

Выпуск цветных металлов для художественной обработки осуществляется в различных видах:

  • Ленты
  • Полосы
  • Чушки
  • Трубки
  • Проволока
  • Прутки
  • Листы

Давайте рассмотрим характерные особенности наиболее популярных среди мастеров цветных металлов:

  • Медь — достаточно мягкий металл красивого красно — оранжевого оттенка, характеризующийся повышенной способностью к ковке и обладающий большой электропроводностью и способностью проводить тепло. Обработка меди не представляет особой сложности, но мастер должен иметь в виду большую вязкость данного металла.

Медь можно паять с помощью олова и твердого припоя, Листовая медь является основным материалом для выполнения чеканки и граверных работ. Медная проволока используется для изготовления декоративных изделий и ажурных скульптур.

Медная раковина

  • Бронза — это сплав меди с оловом. Количественное содержание олова влияет на цвет сплава, который может приобретать розовые, красные, желтые или серые оттенки. Если бронзовое изделие покрыть слоем патины ( декоративным налетом из оксида меди), то она приобретает благородный дымчато — зеленоватый оттенок и выглядит старинной и по — настоящему дорогой. Бронза чаще всего используется для инкрустации и литейных работ.

Листовая бронза

  • Латунь — это сплав меди с цинком. Оттенок металла зависит от количества цинка. По своим качественным характеристикам латунь является более твердым сплавом, чем чистая красная медь, поэтому степень ее ковкости значительно ниже. По сравнению с медью латунь обладает некоторой хрупкостью, но вместе с тем она более упруга.

Латунь легко поддается различным видам обработки, в частности, ее можно использовать для изготовления тонких деталей в инкрустациях, а также украшений различной конфигурации. Для чеканных работ используется в листовом виде.

Чеканка на латуни

  • Цинк — прекрасно подходит для литья как в чистом виде, так и в сплавах с другими металлами. Чистый цинк куется плохо, однако его легко паять, гравировать и обрабатывать различными инструментами. Температура плавления составляет 419* С.

Листовой цинк

  • Олово — цветной металл, с давних пор известный своей мягкостью и пластичностью. Температура его плавления составляет всего 252* С. В качестве компонента олово входит в состав различных видов бронзы. На изломе олово издает характерный, узнаваемый хруст. Чистое олово и его сплавы идеально подходят для изготовления инкрустаций. А еще олово используется для лужения и пайки посуды как в чистом виде, так и в сплавах со свинцом. При этом продукты его окисления безвредны.

Набор оловянных солдатиков

  • Алюминий — цветной металл серебристо — белого цвета, который плавится при температуре около 658* С. Характерной особенностью алюминия является его легкость и простота в обработке металла . Литой алюминий достаточно хрупкий, а в прокатном ( отожженном) виде он приобретает желаемую пластичность.

Алюминиевые изделия ремесленников Мадагаскара

  • Свинец — мягкий цветной металл, имеющий синевато — серый оттенок. Он плавится при температуре 327* С, и хорошо противостоит коррозии. Однако следует отметить, что оксиды свинца являются ядовитыми. Свинец пригоден для литейных работ и изготовления формовых изделий.

Свинец ( эталон)

  • Серебро — также относится к цветным, но при этом является еще и драгоценным металлом. Чистое серебро слишком мягкое, и поэтому его неудобно обрабатывать. Для изготовления изделий применяется в виде сплавов с медью. Серебряные вставки используются в инкрустациях, в гравировке, чеканке и черни.

Антикварные серебряные изделия

Свойства металлов

Рассмотрим некоторые свойства металлов, влияющие на качество выполнения художественных изделий:

  • Ковкость металла — ковкие пластичные металлы требуют большей силы резания, но при этом необходимо учитывать их вязкость. Кусок меди или свинца нужно рубить до конца, а латунь, цинк или сталь можно надколоть зубилом, а после просто сломать. Более твердая латунь при обточке дает гладкую поверхность, в то время как алюминий или медь как бы тянутся за резцом.
  • Хрупкость — это способность твердых материалов разрушаться вследствие механического воздействия без заметной пластической деформации. Это свойство противоположно пластичности. Сильно закаленная сталь, а также многие сорта латуни и бронзы являются очень хрупкими, и от сильных ударов раскалываются на куски. Хрупкость металла не всегда является признаком его твердости, например, отливка из цинка хрупкая, но не твердая. Закаленный стальной нож одновременно и тверд, и хрупок.
  • Упругость — это свойство металлов восстанавливать свою форму и объем после прекращения действия внешних сил или нагревания, вызвавших деформацию. В большой степени этим свойством обладают специальные сорта стали.
  • Плавление при нагревании — способность металла плавиться при нагревании является важным качеством, так как плавление считается одним из самых доступных и дешевых способов получения изделий из металла. Детали огромных машин и маленькие металлические скульптуры изготовляются одинаковым способом.
Читать еще:  Как очистить Потемневшую нержавейку

Если возникает необходимость закалить деталь, и при этом сохранить вязкость металла, мастера используют токи высокой частоты. При этом деталь закаляется в глубину на несколько миллиметров. Однако вся остальная масса металла внутри изделия остается без изменений. И, наконец, металлические детали можно обрабатывать без нагревания — например, способом гравировки и резьбы по металлу.

Серебряные изделия

Какие бывают виды и типы металлов и их сплавов

  • Твёрдость — устойчивость материала к проникновению другого.
  • Прочность — сохранение формы, структуры и размера после воздействия динамической, статической и знакопеременной нагрузки.
  • Упругость — изменение формы без нарушения целостности при деформации и возможность возвращения к первоначальному виду.
  • Пластичность — удерживание полученной формы и целостности под воздействием сил.
  • Износостойкость — сохранение наружной и внутренней целостности под воздействием продолжительного трения.
  • Вязкость — удерживание целостности под увеличивающимся физическим воздействием.
  • Усталость — число и период циклических воздействий, выдерживаемых металлом без изменения целостности.
  • Жароустойчивость — стойкость к высоким температурам.

Первостепенным признаком металлов выступает отрицательный коэффициент проводимости электричества, который при понижении температуры повышается, а при повышении — частично или полностью теряется. Второстепенными признаками материалов являются металлический блеск и высокая температура плавления. Кроме того, некоторые типы металлов, являющихся соединениями, могут быть восстановителями при окислительно-восстановительных реакциях.

Металлические свойства взаимосвязаны, так как составляющие материала влияют на все остальные параметры. Металлы подразделяются на чёрные и цветные, но их классифицируют по многим признакам.

Группа с железом и его сплавами

Чёрным металлам свойственны внушительная плотность, большая температура плавления и тёмно-серый окрас. К этой группе в основном относят железо с его сплавами. Для придания последним специфических свойств используют легирующие компоненты.

Подгруппы чёрных видов металлов:

  • Металлы чёрной группы представлены сплавами железа с разным содержанием углерода и содержанием дополнительных химических элементов: кремнием, серой или фосфором. Популярными материалами выступают сталь и чугун. В стали содержится до 2% углерода. Ей характерна хорошая пластичность и высокие технологические показатели. В чугуне содержание углерода может достигать 5%. Свойства сплава могут отличаться с различными химическими элементами: с содержанием серы и фосфора повышается хрупкость, а с хромом и никелем чугун становится стойким к высоким температурам и коррозии.

    Цветные разновидности

    Цветные металлы более востребованы, чем чёрные, поскольку большая часть из них представляет собой сырье для производства металлопроката. Эта группа материалов отличается широкой сферой применения: они используются в металлургии, машиностроении, радиоэлектронике, сфере высоких технологий и других областях.

    Классификация по физическим параметрам:

    • Тяжёлые — кадмий, никель, олово, ртуть, свинец, цинк. В природных условиях они образуются в прочных соединениях.
    • Лёгкие — алюминий, магний, стронций, титан и другие. Характеризуются невысокой температурой плавления.
    • Благородные — золото, платина, родий, серебро. Для них свойственна повышенная стойкость к коррозии.

    Цветные металлы отличаются небольшой плотностью, хорошей пластичностью, невысокой температурой плавления и преобладающими цветами (белым, жёлтым, красным). Из них изготавливается различная техника. Поскольку прочность материалов довольно низкая, их не используют в чистом виде. Из них производят лёгкие сплавы различного назначения.

    Тяжёлые металлы

    Материалы этой группы характеризуются внушительным атомным весом и плотностью, превышающей показатель у железа.

    Большим спросом пользуется медь, которая выступает проводником электрического тока. Она отличается розовато-красным оттенком, маленьким удельным сопротивлением, хорошей теплопроводностью, небольшой плотностью, прекрасной пластичностью и устойчивостью к коррозии. В сфере техники используют сплавы меди: бронзу (с добавлением алюминия, никеля или олова) и латунь (с цинком). Бронзу применяют в производстве мембран, круглых и плоских пружин, червячных пар и разной арматуры. Из латуни изготавливают ленты, листы, проволоку, трубы, втулки, подшипники.

    Группа тяжёлых металлов выступает одной из главных причин загрязнения окружающей среды. Токсичные вещества поступают в океаны через сточные воды с предприятий отрасли промышленности. Некоторые разновидности тяжёлой группы могут накапливаться в живых организмах.

    Ртуть относится к высокотоксичным металлам для людей. При сжигании угля на электростанциях её соединения переходят в атмосферу, а затем преобразуются в осадки и попадают в водоёмы. Обитатели пресноводных и морских систем накапливают большое количество опасного вещества, что приводит к отравлениям или смерти людей.

    Кадмий считается рассеянным и достаточно редким элементом, способным попадать в океан через сточные воды с металлургических предприятий. Это вещество в малом количестве есть в человеческом организме, но при высоком показателе он разрушает костную ткань и приводит к анемии.

    Свинец в рассеянном состоянии присутствует почти везде. При избытке металла в организме человека наблюдаются проблемы со здоровьем.

    Мягкие виды

    Алюминий серебристо-белого цвета характеризуется лёгкостью, высокой устойчивостью к коррозии, хорошей электропроводностью и пластичностью. Характеристики материала сделали его полезным в самолётостроении, электропромышленности и пищевом производстве. Алюминиевые сплавы применяются в сфере машиностроения.

    Магнию свойственна низкая коррозийная устойчивость, зато лёгкий материал незаменим в технической области. В сплавах с этим металлом используют алюминий, марганец и цинк, которые хорошо режутся и отличаются высокой прочностью. Магниевые сплавы используют в производстве корпусов для фотоаппаратов, двигателей и других приборов.

    Титан применяют в машиностроении, ракетной отрасли и химической промышленности. Сплавы с содержанием этого вещества характеризуются небольшой плотностью, отличными механическими свойствами, коррозийной устойчивостью и податливостью обработке давлением.

    Благородные материалы

    Некоторые разновидности металлов редко встречаются в природе и отличаются трудоёмкими способами добычи. Металлы благородной группы — это:

    • Золото.
    • Серебро.
    • Платина.
    • Родий.

    Люди узнали о золоте ещё в эпоху каменного века. Самый дорогой металл в мире можно встретить в природе в виде самородков, в которых присутствует небольшое количество примесей. Также он встречается в сплавах с серебром.

    Золото отличается теплопроводностью и очень низким сопротивлением. Из-за хорошей ковкости материал применяют в изготовлении ювелирных изделий.

    Серебро идёт вторым по ценности после золота. В природе оно обычно встречается в качестве серебряной руды. Серебру характерны мягкость, пластичность, тепло- и электропроводность.

    Платина, открытая в середине XX века, выступает редким материалом, который можно отыскать только в залежах различных сплавов. Её довольно трудно добывать. Ценность металла заключается в том, что он не подвергается воздействию кислот. При нагревании платина не изменяется в окраске и не окисляется.

    Родий тоже относится к благородным металлам. Он обладает серебристым цветом с голубым отливом. Родий отличает устойчивость к химическим воздействиям и перепадам температур, но хрупкий металл портится под механическим воздействием.

    Классификация по твёрдости

    Металлы также делят на твёрдые и мягкие.

    Самый твёрдый из чистейших материалов в мире — это хром. Он относится к тугоплавким разновидностям и отлично поддаётся механической обработке. Другим твёрдым элементом выступает вольфрам. Он характеризуется высокой температурой плавления, теплоустойчивостью и гибкостью. Из него выковывают различные детали и изготавливают небольшие элементы, необходимые для осветительных приборов. Вольфрам часто присутствует в тяжёлых сплавах. Твёрдые металлы сложно не только добывать, но и просто найти на планете. В основном их содержат упавшие на Землю метеориты.

    К самым мягким металлам относят калий, натрий, рубидий и цезий. Также в этой группе состоят золото, серебро, медь и алюминий. Золото присутствует в морских комплексах, осколках гранитов и человеческом организме. Внешние факторы способны разрушить ценный металл. Мягкое серебро применяют в изготовлении посуды и ювелирных украшений. Натрий широко используют практически в любой промышленной отрасли. Ртуть, выступающую самым мягким металлом в мире, применяют сельскохозяйственной и химической промышленности, а также электротехнике

    Читать еще:  Что такое легированная сталь

    Общая характеристика металлов

    Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

    Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

    Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

    Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

    Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН — )2, (Li + )2СO3 2-.

    Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v ). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

    Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga2, в твердом состоянии хлориды алюминия и ртути (II) АlСl3 и НgСl2 содержат сильно ковалентные связи, но в растворе АlСl3 диссоциирует почти полностью, а НgСl2 — в очень малой степени (да и то на ионы НgСl + и Сl — ).

    Общие физические свойства металлов

    Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

    1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

    2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

    3) Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

    4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

    5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

    6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

    7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

    Общие химические свойства металлов

    Сильные восстановители: Me 0 – nē → Me n +

    Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

    I. Реакции металлов с неметаллами

    1) С кислородом:
    2Mg + O2 → 2MgO

    2) С серой:
    Hg + S → HgS

    3) С галогенами:
    Ni + Cl2 – t° → NiCl2

    6) С водородом (реагируют только щелочные и щелочноземельные металлы):
    2Li + H2 → 2LiH

    II. Реакции металлов с кислотами

    1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

    2) С кислотами-окислителями:

    При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

    III. Взаимодействие металлов с водой

    1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

    2) Металлы средней активности окисляются водой при нагревании до оксида:

    3) Неактивные (Au, Ag, Pt) — не реагируют.

    IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

    В промышленности часто используют не чистые металлы, а их смеси — сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

    Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

    Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

    Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

    При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+ )

    Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

    Коррозия металлов

    Нежелательным химическим свойством металлов является их коррозия, т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

    Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО2 и SО2; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н2 (водородная коррозия).

    Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

    Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

    Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь), имеют высокую коррозионную стойкость.

    Общие способы получения металлов в промышленности:

    электрометаллургия, т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

    пирометаллургия, т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

    гидрометаллургия, т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO4 действием цинка, железа или алюминия).

    В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

Ссылка на основную публикацию
Adblock
detector